- •6. Ядерная модель строения атома. Квантово-механические представления о строении атома.
- •7. Квантовые числа. Формы электронных облаков. Атомная электронная орбиталь.
- •8. Порядок заполнения электронами энергетических уровней в атоме.
- •10. Правило Хунда. Правило Клечковкого.
- •11. Строения атомных ядер. Изотопы. Энергия связи. Дефект массы.
- •12. Периодический закон. Периодическая система д. И. Менделеева.
- •13. Размеры атомов и ионов. Энергия ионизации.
- •15. Теория химического строения.
- •16. Типы химической связи.
- •17)Основные понятия термодинамики
- •20. Гибридизация атомных электронных орбиталей.
- •21. Статистический и термодинамический методы исследования.
- •22. Основные понятия термодинамики.
- •23. Законы термодинамики.
- •24. Превращения энергии при химических реакциях.
- •25. Основные понятия термохимии.
- •30. Зависимость скорости реакций от концентрации реагирующих веществ.
- •35. Цепные реакции.
- •38. Смещение химического равновесия. Принцип Ле Шателье.
- •42. Вода в природе. Свойства воды.
- •43. Растворы. Процесс растворения.
- •44. Способы выражения состава растворов.
- •45. Растворимость. Закон Генри.
- •46. Закон распределения. Экстракция.
- •47. Осмос. Закон Вант-Гоффа.
- •50. Сильные и слабые электролиты. Степень диссоциации.
- •51. Константа диссоциации. Закон разбавления Оствальда.
- •52. Состояние сильных электролитов в растворе. Активность. Ионная сила.
- •53. Свойства кислот, оснований и солей с точки зрения теории электролитической диссоциации.
- •57. Окисленность элементов. Окислительно-восстановительные реакции.
- •60. Электродные потенциалы. Уравнение Нернста. Стандартный электродный потенциал. Ряд стандартных электродных потенциалов.
- •61. Водородный электрод. Измерение электродных потенциалов.
- •62. Электролиз. Реакции на катоде и аноде при электролизе.
- •64. Законы Фарадея. Применение электролиза.
- •65. Определение и классификация коррозионных процессов.
- •66. Химическая коррозия металлов.
- •67. Электрохимическая коррозия.
- •68. Методы защиты от коррозии.
- •70. Элементы II а подгруппы.
- •71. Элементы III а подгруппы.
- •73. Элементы V а подгруппы.
- •74. Элементы VI а подгруппы.
- •75. Элементы VII а подгруппы. Водород.
- •76. Элементы VIII а подгруппы.
- •78. Химия d-элементов I и II группы периодической системы.
- •79. Элементы III б подгруппы.
- •80. Переходные металлы IV б – VII б подгрупп.
7. Квантовые числа. Формы электронных облаков. Атомная электронная орбиталь.
главное квантовое число,латинская буква n , показывает номер энергетического уровня, равно от 1 до бесконечности (на сегодняшний день максимальное значение 7, точно не скажу);
орбитальное квантовое число, латинская буква l, указывает на подуровень на уровне и форму орбитали, принимает значения от 0 до (n-1),на сегодня известны s(при l=0),p,d,f,g-орбитали;
Магнитное квантовое число, латинская буква m, значения целые от -l,..,0,...l,
Спиновое квантовое число, буква s, +1/2 или -1/2.
Единственный электрон атома водорода образует вокруг ядра сферическую орбиталь - шарообразное электронное облако, вроде неплотно намотанного клубка пушистой шерсти или ватного шарика.
Сферическую атомную орбиталь ученые договорились называть s-орбиталью. Она самая устойчивая и располагается довольно близко к ядру.
Чем больше энергия электрона в атоме, тем быстрее он вращается, тем сильнее вытягивается область его пребывания и наконец превращается в гантелеобразную p-орбиталь:
Электронное облако такой формы может занимать в атоме три положения вдоль осей координат пространства x, y и z. Это легко объяснимо: ведь все электроны заряжены отрицательно, поэтому электронные облака взаимно отталкиваются и стремятся разместиться как можно дальше друг от друга.
Все вместе три электронных облака, которые называют px-, py- или pz-орбиталями, образуют симметричную геометрическую фигуру, в центре которой находится атомное ядро. Она похожа на шестиконечный помпончик или на тройной бант - кому как нравится.
Итак, p-орбиталей может быть три. Энергия их, конечно, одинакова, а расположение в пространстве - разное.
Кроме s- и p-орбиталей, существуют электронные орбитали еще более сложной формы; их обозначают буквами d и f. Попадающие сюда электроны приобретают еще больший запас энергии, двигаются по сложным путям, и в итоге получаются сложные и красивые объемные геометрические фигуры.
Все d-орбитали (а их может быть уже пять) одинаковы по энергии, но по-разному расположены в пространстве. Да и по форме, напоминающей перевязанную лентами подушечку, одинаковы только четыре.
А пятая - вроде гантели, продетой в бублик.
Атомная орбиталь — одноэлектронная волновая функция в сферически симметричном электрическом поле атомного ядра, задающаяся главным n, орбитальным l и магнитным m квантовыми числами.
Название «орбиталь» (а не орбита) отражает геометрическое представление о стационарных состояниях электрона в атоме; такое особое название отражает тот факт, что состояния электрона в атоме описывается законами квантовой механики и отличается от классического движения по траектории. Совокупность атомных орбиталей с одинаковым значением главного квантового числа n составляют одну электронную оболочку.
8. Порядок заполнения электронами энергетических уровней в атоме.
Порядок заполнения электронных оболочек (орбиталей с одинаковым значением главного квантового числа n) определяется правилом Клечковского, порядок заполнения электронами орбиталей в пределах одного подуровня (орбиталей с одинаковыми значениями главного квантового числа n и орбитального квантового числа l) определяется Правилом Хунда.
Правило Клечковского (также Правило n+l; также используется название правило Маделунга) — эмпирическое правило, описывающее энергетическое распределение орбиталей в многоэлектронных атомах.
Заполнение электронами орбиталей в атоме происходит в порядке возрастания суммы главного и орбитального квантовых чисел . При одинаковой сумме раньше заполняется орбиталь с меньшим значением .
Формулировка правила Клечковского
Эта энергетическая последовательность легко может быть описана при помощи эмпирического правила суммы двух первых квантовых чисел, разработанного в 1951-м году В. М. Клечковским и иногда называемого правилом (n+l). Это правило основано на зависимости орбитальной энергии от квантовых чисел n и l и описывает энергетическую последовательность атомных орбиталей как функцию суммы . Суть его очень проста:
орбитальная энергия последовательно повышается по мере увеличения суммы , причём при одном и том же значении этой суммы относительно меньшей энергией обладает атомная орбиталь с меньшим значением главного квантового числа . Например, при орбитальные энергии подчиняются последовательности , так как здесь для -орбитали главное квантовое число наименьшее , для -орбитали ; наибольшее , -орбиталь занимает промежуточное положение .
Или же:
При заполнении орбитальных оболочек атома более предпочтительны (более энергетически выгодны), и, значит, заполняются раньше те состояния, для которых сумма главного квантового числа и побочного (орбитального) квантового числа , т.е. , имеет меньшее значение.
9. Принцип минимума энергии. Принцип Паули.
Принцип минимума энергии определяет порядок заселения атомных орбиталей, имеющих различные энергии. Согласно принципу минимума энергии, электроны занимают в первую очередь орбитали, имеющие наименьшую энергию. Энергия подуровней растет в ряду:
1s < 2s < 2 p < 3s < 3p < 4s < 3d < 4p < 5s < 4d < 5p < 6s < 4f5d < 6p < 7s < 5f6d...
Атом водорода имеет один электрон, который может находиться на любой орбитали. Однако, в основном состоянии он должен занимать 1s-орбиталь, имеющую самую низкую энергию.
В атоме калия последний девятнадцатый электрон может заселить либо 3d-, либо 4s-орбиталь. В соответствии с принципом минимума энергии, электрон занимает 4s-орбиталь, что подтверждается экспериментом.
Следует обратить внимание на неопределенность записи 4f5d и 5f6d. Оказалось, что у одних элементов более низкую энергию имеет 4f-подуровень, а у других - 5d-подуровень. То же самое наблюдается для 5f- и 6d-подуровней.
Принцип Паули, который часто называют еще принципом запрета, ограничивает число электронов, которые могут находиться на одной орбитали. Согласно принципу Паули, на любой орбитали может находиться не более двух электронов и то лишь в том случае, если они имеют противоположные спины (неодинаковые спиновые числа). Поэтому в атоме не должно быть двух электронов с одинаковыми четырьмя квантовыми числами (n, l, ml, ms).
Атом лития имеет три электрона. Орбиталь с самой низкой энергией - 1s-орбиталь - может быть заселена лишь двумя электронами, причем у этих электронов должны быть разные спины. Если обозначать спин +1/2 стрелкой, направленной вверх, а спин ?1/2 - стрелкой, направленной вниз, то два электрона с противоположными (антипараллельными) спинами на одной орбитали можно схематически представить так:
Третий электрон в атоме лития должен занимать орбиталь, следующую по энергии за самой низкой орбиталью, то есть 2s-орбиталь.
