
- •6. Ядерная модель строения атома. Квантово-механические представления о строении атома.
- •7. Квантовые числа. Формы электронных облаков. Атомная электронная орбиталь.
- •8. Порядок заполнения электронами энергетических уровней в атоме.
- •10. Правило Хунда. Правило Клечковкого.
- •11. Строения атомных ядер. Изотопы. Энергия связи. Дефект массы.
- •12. Периодический закон. Периодическая система д. И. Менделеева.
- •13. Размеры атомов и ионов. Энергия ионизации.
- •15. Теория химического строения.
- •16. Типы химической связи.
- •17)Основные понятия термодинамики
- •20. Гибридизация атомных электронных орбиталей.
- •21. Статистический и термодинамический методы исследования.
- •22. Основные понятия термодинамики.
- •23. Законы термодинамики.
- •24. Превращения энергии при химических реакциях.
- •25. Основные понятия термохимии.
- •30. Зависимость скорости реакций от концентрации реагирующих веществ.
- •35. Цепные реакции.
- •38. Смещение химического равновесия. Принцип Ле Шателье.
- •42. Вода в природе. Свойства воды.
- •43. Растворы. Процесс растворения.
- •44. Способы выражения состава растворов.
- •45. Растворимость. Закон Генри.
- •46. Закон распределения. Экстракция.
- •47. Осмос. Закон Вант-Гоффа.
- •50. Сильные и слабые электролиты. Степень диссоциации.
- •51. Константа диссоциации. Закон разбавления Оствальда.
- •52. Состояние сильных электролитов в растворе. Активность. Ионная сила.
- •53. Свойства кислот, оснований и солей с точки зрения теории электролитической диссоциации.
- •57. Окисленность элементов. Окислительно-восстановительные реакции.
- •60. Электродные потенциалы. Уравнение Нернста. Стандартный электродный потенциал. Ряд стандартных электродных потенциалов.
- •61. Водородный электрод. Измерение электродных потенциалов.
- •62. Электролиз. Реакции на катоде и аноде при электролизе.
- •64. Законы Фарадея. Применение электролиза.
- •65. Определение и классификация коррозионных процессов.
- •66. Химическая коррозия металлов.
- •67. Электрохимическая коррозия.
- •68. Методы защиты от коррозии.
- •70. Элементы II а подгруппы.
- •71. Элементы III а подгруппы.
- •73. Элементы V а подгруппы.
- •74. Элементы VI а подгруппы.
- •75. Элементы VII а подгруппы. Водород.
- •76. Элементы VIII а подгруппы.
- •78. Химия d-элементов I и II группы периодической системы.
- •79. Элементы III б подгруппы.
- •80. Переходные металлы IV б – VII б подгрупп.
24. Превращения энергии при химических реакциях.
Хими́ческая реа́кция — превращение одного или нескольких исходных веществ (реагентов) в отличающиеся от них по химическому составу или строению вещества (продукты реакции). В отличие от ядерных реакций, при химических реакциях ядра атомов не меняются, в частности не изменяется их общее число, изотопный состав химических элементов, при этом происходит перераспределение электронов и ядер и образуются новые химические вещества.
Химические реакции происходят при смешении или физическом контакте реагентов самопроизвольно, при нагревании, участии катализаторов (катализ), действии света (фотохимические реакции), электрического тока (электродные процессы), ионизирующих излучений (радиационно-химические реакции), механического воздействия (механохимические реакции), в низкотемпературной плазме (плазмохимические реакции) и т. п. Взаимодействие молекул между собой происходит по цепному маршруту: ассоциация – электронная изомеризация – диссоциация, в котором активными частицами являются радикалы,ионы, координационно-ненасыщенные соединения. Скорость химической реакции определяется концентрацией активных частиц и разницей между энергиями связи разрываемой и образуемой.
25. Основные понятия термохимии.
Термохи́мия — раздел химической термодинамики, в задачу которой входит определение и изучение тепловых эффектов реакций, а также установление их взаимосвязей с различными физико-химическими параметрами. Ещё одной из задач термохимии является измерение теплоёмкостей веществ и установление их теплот фазовых переходов.
Важнейшей величиной в термохимии является стандартная теплота образования (стандартная энтальпия образования). Стандартной теплотой (энтальпией) образования сложного вещества называется тепловой эффект (изменение стандартной энтальпии) реакции образования одного моля этого вещества из простых веществ в стандартном состоянии. Стандартная энтальпия образования простых веществ в этом случае принята равной нулю.
В термохимических уравнениях необходимо указывать агрегатные состояния веществ с помощью буквенных индексов, а тепловой эффект реакции (ΔН) записывать отдельно, через запятую. Например, термохимическое уравнение
4NH3(г) + 3O2(г) → 2N2(г) + 6H2O(ж), ΔН=-1531 кДж
показывает, что данная химическая реакция сопровождается выделением 1531 кДж теплоты, при давлении 101 кПа, и относится к тому числу молей каждого из веществ, которое соответствует стехиометрическому коэффициенту в уравнении реакции.
В термохимии также используют уравнения, в которых тепловой эффект относят к одному молю образовавшегося вещества, применяя в случае необходимости дробные коэффициенты.
26. Законы термохимии.
Первый из них, закон Лавуазье–Лапласа, формулируется следующим образом:
Тепловой эффект прямой реакции всегда равен тепловому эффекту обратной реакции с противоположным знаком.
Это означает, что при образовании любого соединения выделяется (поглощается) столько же энергии, сколько поглощается (выделяется) при его распаде на исходные вещества.
Второй закон термохимии был сформулирован в 1840 г российским академиком Г. И. Гессом:
# Тепловой эффект реакции зависит только от начального и конечного состояния веществ и не зависит от промежуточных стадий процесса.
Это означает, что общий тепловой эффект ряда последовательных реакций будет таким же, как и у любого другого ряда реакций, если в начале и в конце этих рядов одни и те же исходные и конечные вещества.
27. Термодинамические функции: внутренняя энергия; энтальпия.
Внутренняя энергия
Определяется в соответствии с первым началом термодинамики, как разность между количеством теплоты, сообщенным системе, и работой, совершенной системой над внешними телам.
Поскольку в изобарном процессе работа равна , приращение энтальпии в квазистатическом изобарном процессе равно количеству теплоты, полученному системой.
Проще говоря, энтальпия - это та энергия, которая доступна для преобразования в теплоту при определенных температуре и давлении.
28. Термодинамические функции: энтропия; энергия Гиббса.
Термодинамическая энтропия — термодинамическая функция, характеризующая меру неупорядоченности термодинамической системы, то есть неоднородность расположения и движения ее частиц.
Свободная энергия Гиббса (или просто энергия Гиббса, или потенциал Гиббса, или термодинамический потенциал в узком смысле) — это величина, показывающая изменение энергии в ходе химической реакции и дающая таким образом ответ на принципиальную возможность протекания химической реакции;
29. Скорость химических реакций.
Раздел химии, занимающийся изучением скоростей реакции называется химическая кинетика.
Фазой называют однородную часть системы, отделённую от других её частей поверхностью раздела, при переходе через которую свойства изменяются скачком. Если реакция протекает в гомогенной системе, то она идёт во всём объёме этой системы, а если в гетерогенной системе – то она протекает только на поверхности раздела фаз, образующих данную систему.
Скоростью гетерогенной реакции называется количество вещества, вступающего в реакцию, или образующегося при реакции за единицу времени на единицу площади поверхности раздела фаз.
Скоростью гомогенной реакции называют количество вещества, вступающего в реакцию в результате реакции за единицу времени в единицу объёма рассматриваемой системы. Скорость реакции в гомогенной системе есть изменение концентрации какого-либо из веществ, вступающих в реакцию или образующихся при реакции, происходящее за единицу времени.
К важнейшим факторам, влияющим на скорость реакции относят следующие: природу реагирующих веществ, их концентрацию, температуру, присутствие в системе катализаторов.
Скорость некоторых гетерогенных реакций зависит также от интенсивности движения жидкости или газа около поверхности, на которой происходит реакция и от степени дисперсности реагирующих веществ.