
- •[Править] Начало научной деятельности
- •[Править] 1905 — «Год чудес»
- •[Править] Специальная теория относительности
- •[Править] Квантовая теория
- •[Править] Броуновское движение
- •[Править] Берн — Цюрих — Прага — Цюрих — Берлин (1905—1914)
- •[Править] Общая теория относительности (1915)
- •[Править] Берлин (1915—1933)
- •10 Ноября 1922 года секретарь Шведской Академии наук Кристофер Аурвиллиус писал Эйнштейну[30]:
- •[Править] Интерпретация квантовой механики
- •[Править] Принстон (1933—1945). Борьба с нацизмом
- •[Править] Принстон (1945—1955). Борьба за мир. Единая теория поля
- •[Править] Интересные факты
- •[Править] Политические убеждения
- •Израильская банкнота достоинством 5 лир (1968) с портретом Эйнштейна
- •[Править] Философия
- •[Править] Религиозные взгляды
- •[Править] Оценки и память
- •[Править] Признание
- •[Править] в честь Эйнштейна названы
- •[Править] Культурное влияние
- •[Править] Гильберт и уравнения гравитационного поля
- •[Править] Признавал ли Эйнштейн эфир
- •[Править] Эйнштейн и советская наука
- •[Править] Другие мифы
[Править] Квантовая теория
Основная статья: История квантовой механики
Макс Планк
Для разрешения проблемы, вошедшей в историю под названием «Ультрафиолетовой катастрофы», и соответствующего согласования теории с экспериментом Макс Планк предположил (1900), что поглощение света веществом происходит дискретно (неделимыми порциями), и энергия поглощаемой порции зависит от частоты света. Некоторое время эту гипотезу даже сам её автор рассматривал как условный математический приём, однако Эйнштейн во второй из вышеупомянутых статей предложил далеко идущее её обобщение и с успехом применил для объяснения свойств фотоэффекта. Эйнштейн выдвинул тезис, что не только процесс поглощения, но и само электромагнитное излучение дискретно; позднее эти порции (кванты) получили название фотонов. Этот тезис позволил ему объяснить две загадки фотоэффекта: почему фототок возникал не при всякой частоте света, а только начиная с определённого порога, зависящего только от вида металла, а энергия и скорость вылетающих электронов зависели не от интенсивности света, а только от его частоты. Теория фотоэффекта Эйнштейна с высокой точностью соответствовала опытным данным, что позднее подтвердили эксперименты Милликена (1916).
Первоначально эти взгляды встретили непонимание большинства физиков, даже Планка Эйнштейну пришлось убеждать в реальности квантов.[17] Постепенно, однако, накопились опытные данные, убедившие скептиков в дискретности электромагнитной энергии. Последнюю точку в споре поставил эффект Комптона (1923).
В 1907 году Эйнштейн опубликовал квантовую теорию теплоёмкости (старая теория при низких температурах сильно расходилась с экспериментом). Позже (1912) Дебай, Борн и Карман уточнили теорию теплоёмкости Эйнштейна, и было достигнуто отличное согласие с опытом.[18]
[Править] Броуновское движение
В 1827 году Роберт Броун наблюдал под микроскопом и впоследствии описал хаотическое движение цветочной пыльцы, плававшей в воде.[19] Эйнштейн, на основе молекулярной теории, разработал статистико-математическую модель подобного движения, причём на основании его модели можно было, помимо прочего, с хорошей точностью оценить размер молекул и их количество в единице объёма. Одновременно к аналогичным выводам пришёл Смолуховский, чья статья была опубликована на несколько месяцев позже, чем эйнштейновская. Свои работы по статистической механике, под названием «Новое определение размеров молекул», Эйнштейн представил в Политехникум в качестве диссертации и в том же 1905 году получил звание доктора философии (эквивалент кандидата естественных наук) по физике. В следующем году Эйнштейн развил свою теорию в новой статье «К теории броуновского движения», и в дальнейшем неоднократно возвращался к этой теме.
Вскоре (1908) измерения Перрена полностью подтвердили адекватность модели Эйнштейна, что стало первым экспериментальным доказательством молекулярно-кинетической теории, подвергавшейся в те годы активным атакам со стороны позитивистов.
Макс Борн писал (1949):[20] «Я думаю, что эти исследования Эйнштейна больше, чем все другие работы, убеждают физиков в реальности атомов и молекул, в справедливости теории теплоты и фундаментальной роли вероятности в законах природы». Работы Эйнштейна по статистической физике цитируются даже чаще, чем его работы по теории относительности.[21] Выведенная им формула для коэффициента диффузии и его связи с дисперсией координат оказалась применимой в самом общем классе задач: марковские процессы диффузии, электродинамика и т. п.[21]
Позднее, в статье «К квантовой теории излучения» (1917) Эйнштейн, исходя из статистических соображений, впервые предположил существование нового вида излучения, происходящего под воздействием внешнего электромагнитного поля («индуцированное излучение»). В начале 1950-х годов был предложен способ усиления света и радиоволн, основанный на использовании индуцированного излучения, а в последующие годы оно легло в основу теории лазеров.