- •Химия как наука. Атом, молекула.
- •Структура атома. Электрон, протон, нейтрон. Ядро атома. Изотопы, изобары, изотоны.
- •Вероятность нахождения электрона в пространстве. Главное и орбитальное, их характеристика.
- •Магнитное и спиновое квантовые числа, их характеристика.
- •10.Физический смысл порядкового номера элемента, номера периода и номера группы. Семейства элементов.
- •11.Энергия ионизации, сродство к электрону, электроотрицательность, их изменение в периодах и группах.
- •12.Водородная связь.
- •13.Межмолекулярное взаимодействие: ориентационное, дисперсионное, индукционное.
- •14.Классификация химических реакций. Реакции соединения, разложения, замещения и обмена, овр.
- •По тепловому эффекту реакции
- •Правила написания реакций двойного обмена
- •Восстановление
- •Свойства овр
- •Восстановители Окислители
- •Гомогенные и гетерогенные реакции
- •21.Зависимость скорости реакций от температуры. Правило Вант-Гоффа. Ответ:
- •Правило Вант-Гоффа
- •Энергия активации
- •24.Химическое равновесие. Константа равновесия для гомо- и гетерогенных систем.
- •27.Растворы электролитов. Теория электролитичекой диссоциации.
- •30.Кислоты, основания, соли с точки зрения теории электролитической диссоциации.
- •31.0Сновные понятия электрохимии. Строение металлов. Металлическая связь.
- •Строение металлов
- •Механизм металлической связи
- •32.Понятие об электродном потенциале и способе его измерения.
- •Измерение потенциалов
- •33.Факторы, влияющие на величину электродного потенциала. Уравнение Нернста.
- •34. Стандартный потенциал. Ряд стандартных электродных потенциалов. Ответ:
- •Ряд стандартных электродных потенциалов металлов
- •36.Электролиз. Основные понятия. Электролиз расплава хлорида натрия. Ответ:
- •Классификация
- •Кислотные аккумуляторы
- •Коррозионный элемент
- •Водородная и кислородная коррозия
- •45.Защита металлов от коррозии. Защитные покрытия. Изменение состава коррозионной среды.
- •46. Электрохимическая защита металлов: электро- и протекторная защита. Антикоррозионное легирование металлов.
27.Растворы электролитов. Теория электролитичекой диссоциации.
Ответ:
Электролиты - вещества, проводящие в расплавах или водных растворах электрический ток. Электролиты в расплавах или водных растворах диссоциируют на ионы. Неэлектролиты - вещества, водные растворы и расплавы которых не проводят электрический ток, так как их молекулы не диссоциируют на ионы. Электролиты при растворении в подходящих растворителях (вода, другие полярные растворители) диссоциируют на ионы. Сильное физико-химическое взаимодействие при растворении приводит к сильному изменению свойств раствора (химическая теория растворов).Вещества, распадающиеся на ионы в растворах или расплавах и потому проводящие электрический ток, называются электролитами.
Вещества, которые в тех же условиях на ионы не распадаются и электрический ток не проводят, называются неэлектролитами.
К электролитам относятся кислоты, основания и почти все соли, к неэлектролитам — большинство органических соединений, а также вещества, в молекулах которых имеются только ковалентные неполярные или малополярные связи.
Электролитическая диссоциация — процесс распада электролита на ионы при растворении его в полярном растворителе или при плавлении.
Диссоциация в растворах
Диссоциация на ионы в растворах происходит вследствие взаимодействия растворённого вещества с растворителем; по данным спектроскопических методов, это взаимодействие носит в значительной мере химический характер. Наряду с сольватирующей способностью молекул растворителя определённую роль в электролитической диссоциации играет также макроскопическое свойство растворителя — его диэлектрическая проницаемость.
28.Степень электрической диссоциации. Факторы, влияющие на степень электролитической диссоциации. Сильные и слабые электролиты.
Ответ:
Степень диссоциации — величина, характеризующая состояние равновесия в реакции диссоциации в гомогенных (однородных) системах.
Степень диссоциации α равна отношению числа диссоциированных молекул n к сумме n + N, где N — число недиссоциированных молекул. Часто α выражают в процентах. Степень диссоциации зависит как от природы растворённого электролита, так и от концентрации раствора.
Концентрации ионов в растворах слабых электролитов качественно характеризуют степенью и константой диссоциации.
Степень диссоциации электролита зависит от многих факторов.
1. Природа растворителя. Притяжение ионов зависит от природы среды, в которой они находятся. Поэтому и степень диссоциации электролита различна в различных растворителях. Электролит, хорошо диссоциирующий в воде воде, может плохо или совсем не диссоциировать в другом растворителе.
2. Концентрация раствора. С уменьшением концентрации раствора степень диссоциации увеличивается. Это происходит потому, что процесс образования молекул из ионов !В результате разбавления затрудняется: для образования молекулы должно произойти столкновение, а концентрация ионов и число столкновений с разбавлением уменьшаются.
3. Природа электролита. Различные электролиты имеют разную степень диссоциации в одинаковых условиях. Так, серная кислота в водных растворах диссоциирует во (много раз лучше, чем уксусная. По степени диссоциации электролиты делятся на сильные и слабые, имеются электролиты средней силы. Обычно сравнивают степень диссоциации электролитов в 0,1 н. растворах. Сильными называют электролиты, степень диссоциации которых в 0,1 н. растворе выше 30%. Электролиты средней силы диссоциированы от 3% до 30%. Электролиты, степень диссоциации которых менее 3%, называются слабыми (табл. 1).
4. Температура. У сильных электролитов с повышением температуры степень диссоциации уменьшается. У слабых при повышении температуры степень диссоциации «вначале повышается, а после 60 °С начинает уменьшаться.
Вода, которая является слабым электролитом, находится (в особом положении, так как диссоциация воды проходит с поглощением тепла. Поэтому с повышением температуры согласно принципу Ле-Шателье степень диссоциации воды заметно возрастает.
Как было указано выше, электролиты делятся на слабые и сильные.
Сильные электролиты в водном растворе диссоциированы.
Сильные электролиты — электролиты, степень диссоциации которых в растворах равна единице (то есть диссоциируют полностью) и не зависит от концентрации раствора. Сюда относятся подавляющее большинство солей, щелочей, а также некоторые кислоты (сильные кислоты, такие как: HCl, HBr, HI, HNO3).
Слабые электролиты — степень диссоциации меньше единицы (то есть диссоциируют не полностью) и уменьшается с ростом концентрации. К ним относят воду, ряд кислот (слабые кислоты), основания p-, d-, и f- элементов.
Между этими двумя группами четкой границы нет, одно и то же вещество может в одном растворителе проявлять свойства сильного электролита, а в другом — слабого.
29.Слабые электролиты. Константа диссоциации на примере уксусной кислоты. Закон разбавления Оствальда.
Ответ:
Взаимодействие солей с водой, в результате которого образуются кислота (или кислая соль), и основание (или основная соль), называется гидролизом солей.
Рассмотрим гидролиз солей следующих основных типов:
1. Соли сильного основания и сильной кислоты (например, KBr, NаNО3) при растворении в воде не гидролизуются, и раствор соли имеет нейтральную реакцию.
2. Соли сильного основания и cлабой кислоты, например KClO, Nа2СО3, СН3СООNа, NаСN, Nа2S, К2SiO3. Запишем уравнение гидролиза ацетата натрия:
СН3СООNа + Н2О СН3СООН +NaОН
В результате реакции образовался слабый электролит — уксусная кислота. В ионном виде этот процесс можно записать так:
СН3СОО- + Н2О СН3СООН + ОН-
Таким образом, раствор СН3СООNа проявляет щелочную реакцию. При растворении солей многоосновных кислот гидролиз протекает ступенчато, например:
Nа2S + Н2О NaНS + NаОН
или в ионной форме
S2- + Н2О НS- + ОН-. (1)
Процесс (1) отражает гидролиз Nа2S по первой ступени.
Чтобы гидролиз прошел полностью, как правило, увеличивают температуру процесса:
НS- + Н2О Н2S + ОН-.
Таким образом, при растворении в воде соли сильного основания и слабой кислоты раствор приобретает щелочную реакцию вследствие гидролиза.
Закон разбавления Оствальда — соотношение, выражающее зависимость эквивалентной электропроводности разбавленного раствора бинарного слабого электролита от концентрации раствора:
Здесь К — константа диссоциации электролита, с — концентрация, λ и λ∞ — значения эквивалентной электропроводности соответственно при концентрации с и при бесконечном разбавлении. Соотношение является следствием закона действующих масс и равенства
где α — степень диссоциации.
Закон разбавления Оствальда выведен В.Оствальдом в 1888 и им же подтвержден опытным путём. Экспериментальное установление правильности закона разбавления Оствальда имело большое значение для обоснования теории электролитической диссоциации.
