
- •3. Газовые законы. Закон объемных отношений Гей-Люссака.
- •Молярный объём газа – это объем газа в котором содержится 1 моль частиц этого газа
- •7. Строение атомов химических элементов и закономерности в изменении их свойств на примере: а) элементов одного периода; б) элементов одной главной подгруппы. Изотопы.
- •8. Квантово-механическая модель атома.
- •15. Типы химических связей.
- •17. Метод валентных связей. Гибридизация атомных орбиталей и геометрия молекул. Полярность молекул. Пространственное строение молекул bf3, h2o, ch4.
- •20. Металлическая связь. Понятие электронного газа. Проводники, полупроводники, диэлектрики.
- •24. Понятие о координационном числе центрального атома и дентатности лигандов. Хелаты.
- •23. Диссоциация комплексных соединений. Ступенчатая диссоциация комплексных ионов. Общая (полная) константа нестойкости комплексных ионов как мера их устойчивости.
- •22. Комплексные соединения. Структура. Классификация. Номенклатура.
- •46. Степень окисления элементов и правила её определения. Примеры определения степени окисления в соединениях, содержащих более двух различных элементов.
- •Ряд активности металлов.
- •34. Понятие об энергии активации. Уравнение Аррениуса. Катализаторы.
- •30. Оксиды, их классификация. Виды связей. Химические свойства.
- •Основные химические свойства:
- •35. Общие представления о растворах. Растворимость газа в жидкости, растворимость жидкости в жидкости. Растворимость твердого тела в жидкости.
- •40. Труднорастворимые электролиты. Равновесие раствор-осадок. Произведение растворимости. Связь растворимости и произведения растворимости на примере BaSo4.
- •39. Ионное произведение воды. Водородный показатель. Определение pH водных растворов сильных и слабых электролитов.
- •45. Способы выражения количественного состава растворов.
8. Квантово-механическая модель атома.
Диаметр атома равен 10-8 см. Диаметр ядра от 10-13 до 10-14 см. Основу квантовой механики составляют представления о двойственности поведения микрочастиц. Двойственность заключается в следующем: с одной стороны при одних физических условиях микрочастицы ведут себя как в-ва (имеют четкую траекторию движения, массу, импульс), при других условиях они проявляют волновые св-ва: E=hν – ур-е Планка. E=mc2 – ур-е Эйнштейна. Постулаты Бора: 1) Существуют сос-ния атома водорода, при которых возможно движение электрона относительно ядра без выделения или поглощения энергии. 2) При переходе из одного такого сос-ния в другое атом излучает и поглощает квант энергии.
11. Заполнение электронами орбиталей у элементов малых периодов на примере элементов третьего периода.
Na(натрий11) - 1s2, 2s2, 2p6, 3s1
Mg(магний12) - 1s2, 2s2, 2p6, 3s2
Al(алюминий13) -1s2, 2s2, 2p6, 3s2, 3p1
Si(кремний14) - 1s2, 2s2, 2p6, 3s2, 3p2
P(фосфор15) - 1s2, 2s2, 2p6, 3s2, 3p3
S(сера16) - 1s2, 2s2, 2p6, 3s2, 3p4
Cl(хлор17) -1s2, 2s2, 2p6, 3s2, 3p5
Ar(аргон18) - 1s2, 2s2, 2p6, 3s2, 3p6
12. Заполнение электронами орбиталей у d-элементов на примере Mn, Pd, Cd.
Mn(марганец25) -1s2, 2s2, 2p6, 3s2, 3p6, 3d5, 4s2.
Pd(палладий46) - 1s2, 2s2, 2p6, 3s2, 3p6, 3d10, 4s2, 4p6, 4d10, 5s0.
Cd(кадмий48) - 1s2, 2s2, 2p6, 3s2, 3p6, 3d10, 4s2, 4p6, 4d10, 5s2.
13. Заполнение электронами орбиталей у f-элементов на примере Lu, Sm.
Lu(лютеций71)-1s2, 2s2, 2p6, 3s2, 3p6, 3d10, 4s2, 4p6, 4d10, 4f14, 5s2, 5p6, 5d1,6s2.
Sm(самарий62)-4f6,5s2,5p6,6s2
Водородная связь. Ее образование обусловленно тем, что в результате сильного смещения электронной пары к электроотрицательному атому атом водорода, обладающий эффективным положительным зарядом, может взаимодействовать с другим электроотрицательным атомом (F, O, N, реже Cl, Br, S). Энергия такого электростатического взаимодействия составляет 20√100 кДжмоль√1. Водородные связи могут быть внутри- и межмолекулярными. Внутримолекулярная водородная связь образуется, например, в ацетилацетоне и сопровождается замыканием цикла (рис. 3.3).
Молекулы карбоновых кислот в неполярных растворителях димеризуются за счет двух межмолекулярных водородных связей.
Исключительно важную роль водородная связь играет в биологических макромолекулах, таких неорганических соединениях как H2O, H2F2, NH3. За счет водородных связей вода характеризуется столь высокими по сравнению с H2Э (Э = S, Se, Te) температурами плавления и кипения. Если бы водородные связи отсутствовали, то вода плавилась бы при √100 °С, а кипела при √80 °С.
15. Типы химических связей.
Химическая связь — это взаимодействие частиц (атомов, ионов), осуществляемое путем обмена электронами. Различают несколько видов связи.
Ковалентная
связь образуется в результате
обобществления электронов (с образованием
общих электронных пар), которое происходит
в ходе перекрывания электронных облаков.
В образовании ковалентной связи
участвуют электронные облака двух
атомов.
Различают две
основные разновидности ковалентной
связи: а) неполярную и б) полярную.
а)
Ковалентная неполярная связь образуется
между атомами неметалла одного и того
лее химического элемента. Такую связь
имеют простые вещества, например О2;
N2; C12. Можно привести схему образования
молекулы водорода:
(на
схеме электроны обозначены точками).
б)
Ковалентная полярная связь образуется
между атомами различных неметаллов.
схематично образование ковалентной
полярной связи в молекуле НС1 можно
изобразить так:
Общая
электронная плотность оказывается
смещенной в сторону хлора, в результате
чего на атоме хлора возникает частичный
отрицательный заряд
,
а на атоме водорода — частичный
положительный
.
Таким образом, молекула становится
полярной:
Ковалентная
связь
√ наиболее общий вид химической связи,
возникающий за счет обобществления
электронной пары посредством обменного
механизма,
когда каждый из взаимодействующих
атомов поставляет по одному электрону,
или по донорно-акцепторному
механизму,
если электронная пара передается в
общее пользование одним атомом (донором)
другому атому (акцептору) (рис. 3.2).
Классический пример неполярной ковалентной связи (разность электроотрицательностей равна нулю) наблюдается у гомоядерных молекул: H√H, F√F. Энергия двухэлектронной двухцентровой связи лежит в пределах 200√2000 кДжмоль√1.
При образовании гетероатомной ковалентной связи электронная пара смещена к более электроотрицательному атому, что делает такую связь полярной. (HCl, H2O). Ионность полярной связи в процентах вычисляется по эмпирическому соотношению 16(чA √ чB) + 3,5(чA √ чB)2, где чA и чB √ электроотрицательности атомов А и В молекулы АВ. Кроме поляризуемости ковалентная связь обладает свойством насыщаемости √ способностью атома образовывать столько ковалентных связей, сколько у него имеется энергетически доступных атомных орбиталей. О третьем свойстве ковалентной связи √ направленности √ речь ниже (см. метод валентных связей).
Ионная связь √ частный случай ковалентной, когда образовавшаяся электронная пара полностью принадлежит более электроотрицательному атому, становящемуся анионом. Основой для выделения этой связи в отдельный тип служит то обстоятельство, что соединения с такой связью можно описывать в электростатическом приближении, считая ионную связь обусловленной притяжением положительных и отрицательных ионов. Взаимодействие ионов противоположного знака не зависит от направления, а кулоновские силы не обладают свойством насыщености. Поэтому каждый ион в ионном соединении притягивает такое число ионов противоположного знака, чтобы образовалась кристаллическая решетка ионного типа. В ионном кристалле нет молекул. Каждый ион окружен определенным числом ионов другого знака (координационное число иона). Ионные пары могут существовать в газообразном состоянии в виде полярных молекул. В газообразном состоянии NaCl имеет дипольный момент ~310√29 Клм, что соответствует смещению 0,8 заряда электрона на длину связи 0,236 нм от Na к Cl, т. е. Na0,8+Cl0,8√.
Металлическая связь возникает в результате частичной делокализации валентных электронов, которые достаточно свободно движутся в решетке металлов, электростатически взаимодействуя с положительно заряженными ионами. Силы связи не локализованы и не направлены, а делокализированные электроны обусловливают высокую тепло- и электропроводность.