Добавил:
Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Скачиваний:
323
Добавлен:
24.04.2014
Размер:
740.86 Кб
Скачать

9. Комплексные числа. Многочлены. Рациональные функции.

9.1. Комплексные числа.

9.1.1. Определениё комплексного числа.

Опр.9.1.1. Комплексным числом будем называть упорядоченную пару действительных чисел , записанную в форме , где - новый объект ("мнимая единица"), для которого при вычислениях полагаем .

Первая компонента комплексного числа , действительное число , называется действительной частью числа , это обозначается так: ; вторая компонента, действительное число , называется мнимой частью числа : .

Опр.9.1.2. Два комплексных числа и равны тогда и только тогда, когда равны их действительные и мнимые части: .

Множество комплексных чисел неупорядочено, т.е. для комплексных чисел не вводятся отношения "больше" или "меньше".

Геометрически комплексное число изображается как точка с координатами на плоскости. Плоскость, на которой изображаются комплексные числа, называется комплексной плоскостью.

Опр.9.1.3. Суммой двух комплексных чисел и называется комплексное число , определяемое соотношением , т.е. , .

Это означает, что геометрически комплексные числа складываются как векторы на плоскости, покоординатно.

Опр.9.1.4. Произведением двух комплексных чисел и называется комплексное число , определяемое соотношением , т.е. .

Для двух комплексных чисел с нулевой мнимой частью и получим , , т.е. для множества комплексных чисел с нулевой мнимой частью операции сложения и умножения не выводят за пределы этого множества. Отождествим каждое такое число с действительным числом , равным действительной части комплексного числа, т.е. будем считать, что. Теперь действительные числа - подмножество множества комплексных чисел . Далее, числа с нулевой действительной частью, т.е. числа вида , называются мнимыми числами. Мнимое число с единичной мнимой частью будем записывать просто как : ; квадрат этого числа, по определению умножения, равен , что обосновывает данное в опр.9.1.1 свойство "мнимой единицы".

Легко убедиться, что операция сложения на множестве комплексных чисел имеет свойства, аналогичным аксиомам I.1- I.4, которым удовлетворяет операция сложения действительных чисел (см. раздел 3.1. Аксиомы действительных чисел):

I.1. ;

I.2. ;

I.3. Существует такой элемент , что для . Этот элемент - число .

I.4. Для каждого элемента существует такой элемент , что . Этот элемент - число . Сумма чисел и называется разностью чисел и : .

Прежде, чем определить операцию деления комплексных чисел, введём понятия сопряжённого числа и модуля комплексного числа.

Опр.9.1.5. Число называется числом, сопряжённым к числу . Часто сопряжённое число обозначается также символом .

Опр.9.1.6. Действительное число называется модулем комплексного числа .

Найдём произведение сопряжённых чисел: . Таким образом, - всегда неотрицательное действительное число, причём .

Для нахождения частного комплексных чисел домножим числитель и знаменатель на число, сопряжённое знаменателю: .

Для операции умножения справедливы свойства

II.1. ;

II.2. ;

II.3. Произведение числа на любое число равно ;

II.4. Для каждого числа существует такое число , что , ;

Операции сложения и умножения подчиняется закону дистрибутивности:

III.1. .

Операция сопряжения имеет следующие свойства:

IV. .

Примеры выполнения арифметических действий с комплексными числами: пусть , . Тогда ; ; .

9.1.2. Тригонометрическая форма комплексного числа. Запись комплексного числа в виде называется алгебраической формой комплексного числа. Изобразим число как точку на плоскости с декартовыми координатами . Если теперь перейти к полярным координатам , то , поэтому . Угол называется аргументом комплексного числа и обозначается : . Аргумент комплексного числа определён неоднозначно (с точностью до слагаемых, кратных ): если, например, , то значения , равные и т.д. тоже будут соответствовать числу , поэтому значение аргумента, удовлетворяющее условиям , будем называть главным; для обозначения всех значений аргумента комплексного числа применяется символ : .

Запись комплексного числа в виде называется тригонометрической формой числа.

Число - единственное число, модуль которого равен нулю; аргумент для этого числа не определён.

Переход от тригонометрической формы к алгебраической очевиден: . Формулы для перехода от алгебраической формы к тригонометрической таковы:

При решении задач на перевод алгебраически заданного комплексного числа в тригонометрическую форму следует изобразить это число на комплексной плоскости и, таким образом, контролировать полученный результат. Примеры: записать в тригонометрической форме числа , , , , . Решение: , , , , .

Более интересный пример: привести к тригонометрической форме число . Изобразим на комплексной плоскости вместе с точкой точку . Из рисунка понятно, что , поэтому .

В тригонометрической форме легко интерпретируются такие действия, как умножение, деление, возведение в степень. Пусть , , . Тогда

.

Вывод: при умножении комплексных чисел их модули перемножаются, аргументы складываются. Очевидно, если , то , т.е. операция сопряжения не меняет модуль числа, и изменяет знак его аргумента, поэтому . Вывод: при делении комплексных чисел их модули делятся друг на друга, аргумент частного равен разности аргументов делимого и делителя.

Введём следующее обозначение: для любого действительного числа сумму будем записывать как . Формула называется формулой Эйлера, она обосновывается в теории функций комплексной переменной; пока будем понимать показательную функцию в левой части этой формулы как краткую форму записи для суммы, находящейся справа. Теперь любое комплексное число можно представить как ; эта форма записи называется показательной. Введённое обозначение согласовано со свойствами показательной функции:

;

.

Индукцией по показателю степени легко доказывается формула Муавра: если , то , или, в показательной форме, . С помощью этой формулы легко вычислять высокие степени комплексных чисел и выводить формулы для синусов и косинусов кратных углов:

;в качестве второго примера выведем формулы для и : если , то, по формуле бинома Ньютона,

. Выпишем степени числа :

и далее значения степеней повторяются (для отрицательных степеней это тоже справедливо: и т.д.). Итак,

. С другой стороны, , поэтому, приравнивая действительные и мнимые части этих двух представлений пятой степени числа , получим , .

В заключение рассмотрим операцию извлечения корня -ой степени из комплексного числа . По определению, любое число , такое, что , называется корнем -ой степени из числа . Пусть , . Тогда . Числа равны, если равны их модули и аргументы, поэтому , , откуда , , при этом различных значения корня -ой степени из числа получаются при .

Пример: найти все значения. Число в тригонометрической форме равно . Все пять значений корня даются формулой при . Они расположены на окружности радиуса . Значение, соответствующее , имеет аргумент , остальные расположены с интервалом по , равным , образуя правильный пятиугольник.

Соседние файлы в папке lec2