
- •Основные типы структур неорганических соединений. Вещества с молекулярной и немолекулярной структурой. Атомные, молекулярные, ионные и металлические кристаллические решетки .
- •Строение электронных оболочек атома. Волновая теория строения атома. Понятие об электронном облаке.
- •Квантовые числа как характеристика состояния электрона в атоме. Физический смысл квантовых чисел. Энергетический уровень, подуровень. Атомная орбиталь. Форма и ориентация электронных облаков.
- •Принцип Паули и емкость электронных оболочек. Правило Хунда. Порядок заполнения атомных орбиталей. Правила Клечковского. Строение электронных оболочек атомов химических элементов.
- •Химическая связь. Основные типы химической связи. Полярность связи как функция разности электроотрицательностей химических элементов.
- •Количественные характеристики химической связи: энергия связи, длина, валентный угол. Полярность связи и полярность молекулы в целом, дипольный момент молекулы.
- •Ковалентная связь. Основные положения метода валентных связей .Спиновая теория валентности. Обменный и донорно-акцепторный механизм образования ковалентной связи.
- •3) Химическая связь в методе вс является двухцентровой и локализована в области между ядрами двух атомов ее образующих.
- •Валентность и степень окисления химических элементов в их соединениях.
- •Одиночные и кратные связи. Сигма- и пи- связи.
- •Ионная связь. Простые и сложные ионы. Ионные кристаллические решетки. Концепция поляризации ионов.
- •Металлическая связь .Металлические кристаллические решетки .
- •Водородная связь. Природа и механизм образования водородной связи
- •Зависимость физических свойств веществ с молекулярной структурой от характера межмолекулярного взаимодействия. Влияние водородной связи на свойства веществ.
- •Силы межмолекулярного взаимодействия (силы Ван-дер-Ваальса). Ориентационное, индукционное и дисперсионное взаимодействие.
- •Химические реакции. Классификация химических реакций. Основные задачи химической кинетики и химической термодинамики.
- •Химическая система. Функция состояния системы. Работа и теплота. Изменение внутренней энергии системы в ходе химических превращений
- •Первое начало термодинамики. Энтальпия. Изменение энтальпии в ходе химического процесса. Закон Гесса, следствие из закона Гесса. Стандартная энтальпия образования вещества
- •Катализ и катализаторы. Гомогенные и гетерогенные катализаторы. Влияние катализаторов на величину энергии активации и константу скорости реакции.
- •Растворы. Классификация дисперсных систем: истинные растворы, коллоидные растворы, грубодисперсные системы.
- •Растворимость веществ. Влияние природы растворяемого вещества и растворителя, температуры и давления на растворимость газов, твердых и жидких веществ.
- •Сильные и слабые электролиты. Степень диссоциации. Равновесие в растворах слабых электролитов. Константа диссоциации. Связь константы диссоциации со степенью диссоциации и концентраци
- •Реакции ионного обмена в растворах. Обратимые и необратимые реакции, признаки необратимости реакций
- •Труднорастворимые электролиты. Равновесие между осадком и насыщенным раствором. Произведение растворимости и растворимость веществ
- •Константа гидролиза. Степень гидролиза, связь степени гидролиза с константой гидролиза и концентрацией раствора. Факторы, определяющие глубину гидролиза солей. Совместный гидролиз.
- •Окислительно-восстановительные реакции (овр). Основные типы овр. Типичные окислители и восстановители. Составление уравнений овр методом электронного и ионно-электронного баланса.
- •Классификация и номенклатура комплексных соединений. Основные типы комплексных соединений.
- •2) По типу лигандов комплексные частицы делятся на:
- •Кислоты и основания. Влияние положения элемента в периодической системе и степени окисления элемента на состав и кислотно-основные свойства гидроксидов элементов
- •Классификация реакций органических соединений по характеру химических превращений
- •Конформация
- •Методы масс-спектрометрии
- •Инфракрасные (ик) спектры и комбинационное рассеяние света
- •Спектроскопия в видимой и ультрафиолетовой (уф) областях
- •Рентгеновские методы исследования
- •Метод ямр
- •Общая характеристика титриметрический (объемный) метод анализа
- •Кислотно-основное титрование (метод нейтрализации) Общая характеристика метода
- •Перманганатометрия
- •Комплексонометрия Общая характеристика метода
- •Условия проведения комплексонометрического титрования
- •Гравиметрический (весовой) метод анализа
- •Электрохимические методы анализа
- •Фотометрический метод анализа Основные законы и формулы
Металлическая связь .Металлические кристаллические решетки .
Металлическая связь — химическая связь, обусловленная наличием относительно свободных электронов. Характерна как для чистых металлов, так и их сплавов и интерметаллических соединений.
Большинство металлов образует одну из следующих высокосимметричных решёток с плотной упаковкой атомов: кубическую объемно центрированную, кубическую гранецентрированную и гексагональную.
Во всех узлах кристаллической решётки расположены положительные ионы металла. Между ними беспорядочно, подобно молекулам газа движутся валентные электроны, отцепившиеся от атомов при образовании ионов. Эти электроны играют роль цемента, удерживая вместе положительные ионы; в противном случае решётка распалась бы под действием сил отталкивания между ионами. Вместе с тем и электроны удерживаются ионами в пределах кристаллической решётки и не могут её покинуть. Силы связи не локализованы и не направлены. Поэтому в большинстве случаев проявляются высокие координационные числа (например, 12 или 8).
Водородная связь. Природа и механизм образования водородной связи
Водородная связь - это взаимодействие между двумя электроотрицательными атомами одной или разных молекул посредством атома водорода: А−Н ... В (чертой обозначена ковалентная связь, тремя точками - водородная связь).
Одним из признаков водородной связи может служить расстояние между атомом водорода и другим атомом, ее образующим. Оно должно быть меньше, чем сумма радиусов этих атомов.
Они возникают, как правило, между атомами фтора, азота и кислорода (наиболее электроотрицательные элементы), реже - при участии атомов хлора, серы и других неметаллов. Прочные водородные связи образуются в таких жидких веществах, как вода, фтороводород, кислородсодержащие неорганические кислоты, карбоновые кислоты, фенолы, спирты, аммиак, амины. При кристаллизации водородные связи в этих веществах обычно сохраняются.
Зависимость физических свойств веществ с молекулярной структурой от характера межмолекулярного взаимодействия. Влияние водородной связи на свойства веществ.
Межмолекулярные водородные связи обусловливают ассоциацию молекул, что приводит к повышению температур кипения и плавления вещества. Например, этиловый спирт C2H5OH, способный к ассоциации, кипит при +78,3°С, а диметиловый эфир СН3ОСН3, не образующий водородных связей, лишь при -24°С (молекулярная формула обоих веществ С2Н6О).
Образование Н-связей с молекулами растворителя способствует улучшению растворимости. Так, метиловый и этиловый спирты (CH3OH, С2Н5ОН), образуя Н-связи с молекулами воды, неограниченно в ней растворяются.
Внутримолекулярная водородная связь образуется при благоприятном пространственном расположении в молекуле соответствующих групп атомов и специфически влияет на свойства. Например, Н-связь внутри молекул салициловой кислоты повышает ее кислотность. Водородные связи играют исключительно важную роль в формировании пространственной структуры биополимеров (белков, полисахаридов, нуклеиновых кислот), что в значительной степени определяет их биологические функции.