
- •Основные типы структур неорганических соединений. Вещества с молекулярной и немолекулярной структурой. Атомные, молекулярные, ионные и металлические кристаллические решетки .
- •Строение электронных оболочек атома. Волновая теория строения атома. Понятие об электронном облаке.
- •Квантовые числа как характеристика состояния электрона в атоме. Физический смысл квантовых чисел. Энергетический уровень, подуровень. Атомная орбиталь. Форма и ориентация электронных облаков.
- •Принцип Паули и емкость электронных оболочек. Правило Хунда. Порядок заполнения атомных орбиталей. Правила Клечковского. Строение электронных оболочек атомов химических элементов.
- •Химическая связь. Основные типы химической связи. Полярность связи как функция разности электроотрицательностей химических элементов.
- •Количественные характеристики химической связи: энергия связи, длина, валентный угол. Полярность связи и полярность молекулы в целом, дипольный момент молекулы.
- •Ковалентная связь. Основные положения метода валентных связей .Спиновая теория валентности. Обменный и донорно-акцепторный механизм образования ковалентной связи.
- •3) Химическая связь в методе вс является двухцентровой и локализована в области между ядрами двух атомов ее образующих.
- •Валентность и степень окисления химических элементов в их соединениях.
- •Одиночные и кратные связи. Сигма- и пи- связи.
- •Ионная связь. Простые и сложные ионы. Ионные кристаллические решетки. Концепция поляризации ионов.
- •Металлическая связь .Металлические кристаллические решетки .
- •Водородная связь. Природа и механизм образования водородной связи
- •Зависимость физических свойств веществ с молекулярной структурой от характера межмолекулярного взаимодействия. Влияние водородной связи на свойства веществ.
- •Силы межмолекулярного взаимодействия (силы Ван-дер-Ваальса). Ориентационное, индукционное и дисперсионное взаимодействие.
- •Химические реакции. Классификация химических реакций. Основные задачи химической кинетики и химической термодинамики.
- •Химическая система. Функция состояния системы. Работа и теплота. Изменение внутренней энергии системы в ходе химических превращений
- •Первое начало термодинамики. Энтальпия. Изменение энтальпии в ходе химического процесса. Закон Гесса, следствие из закона Гесса. Стандартная энтальпия образования вещества
- •Катализ и катализаторы. Гомогенные и гетерогенные катализаторы. Влияние катализаторов на величину энергии активации и константу скорости реакции.
- •Растворы. Классификация дисперсных систем: истинные растворы, коллоидные растворы, грубодисперсные системы.
- •Растворимость веществ. Влияние природы растворяемого вещества и растворителя, температуры и давления на растворимость газов, твердых и жидких веществ.
- •Сильные и слабые электролиты. Степень диссоциации. Равновесие в растворах слабых электролитов. Константа диссоциации. Связь константы диссоциации со степенью диссоциации и концентраци
- •Реакции ионного обмена в растворах. Обратимые и необратимые реакции, признаки необратимости реакций
- •Труднорастворимые электролиты. Равновесие между осадком и насыщенным раствором. Произведение растворимости и растворимость веществ
- •Константа гидролиза. Степень гидролиза, связь степени гидролиза с константой гидролиза и концентрацией раствора. Факторы, определяющие глубину гидролиза солей. Совместный гидролиз.
- •Окислительно-восстановительные реакции (овр). Основные типы овр. Типичные окислители и восстановители. Составление уравнений овр методом электронного и ионно-электронного баланса.
- •Классификация и номенклатура комплексных соединений. Основные типы комплексных соединений.
- •2) По типу лигандов комплексные частицы делятся на:
- •Кислоты и основания. Влияние положения элемента в периодической системе и степени окисления элемента на состав и кислотно-основные свойства гидроксидов элементов
- •Классификация реакций органических соединений по характеру химических превращений
- •Конформация
- •Методы масс-спектрометрии
- •Инфракрасные (ик) спектры и комбинационное рассеяние света
- •Спектроскопия в видимой и ультрафиолетовой (уф) областях
- •Рентгеновские методы исследования
- •Метод ямр
- •Общая характеристика титриметрический (объемный) метод анализа
- •Кислотно-основное титрование (метод нейтрализации) Общая характеристика метода
- •Перманганатометрия
- •Комплексонометрия Общая характеристика метода
- •Условия проведения комплексонометрического титрования
- •Гравиметрический (весовой) метод анализа
- •Электрохимические методы анализа
- •Фотометрический метод анализа Основные законы и формулы
Одиночные и кратные связи. Сигма- и пи- связи.
Сигма>пи>дельта
Перекрывание атомных орбиталей вдоль линии, связывающей ядра атомов, приводит к образованию σ-связей. Между двумя атомами в химической частице возможна только одна σ-связь. Все σ-связи обладают осевой симметрией относительно межъядерной оси.
При дополнительном перекрывании атомных орбиталей, перпендикулярных линии связи, образуются π-связи. В результате этого между атомами возникают кратные связи: Одинарная (σ) Двойная (σ +π) Тройная (σ + π + π) С появлением π-связи, не имеющей осевой симметрии, свободное вращение фрагментов химической частицы вокруг σ-связи становится невозможным, так как оно должно привести к разрыву π-связи.
Концепция гибридизации атомных орбиталей и пространственное строение молекул и сложных ионов. Типы гибридизации sp, sp2, sp3, dsp3,d2sp3. Гибридизация с участием неподеленных электронных пар.
Сущность гибридизации атомных орбиталей состоит в том, что электрон вблизи ядра связанного атома характеризуется не отдельной атомной орбиталью, а комбинацией атомных орбиталей с одинаковым главным квантовым числом. sp линейная 180o BeCl2; sp2 треугольная 120o BCl3; sp3 тетраэдрическая 109,5o CH4; sp3d тригонально-бипирамидальная 90o PCl5; 120o ; sp3d2 октаэдрическая 90o SF6 неподеленные электронные пары всегда располагаются в экваториальной плоскости тригональной бипирамиды. На этом основании делается вывод, что они требуют больше свободного пространства, чем пары электронов, участвующие в образовании связи. Если центральный атом одновременно имеет неподеленные пары электронов и образует кратные связи (например, в молекуле XeOF2), то в случае sp3d-гибридизации именно они располагаются в экваториальной плоскости тригональной бипирамиды.
Ионная связь. Простые и сложные ионы. Ионные кристаллические решетки. Концепция поляризации ионов.
Ионная связь — прочная химическая связь, образующаяся между атомами с большой разностью (>1,7 по шкале Полинга) электроотрицательностей, при которой общая электронная пара полностью переходит к атому с большей электроотрицательностью.Это притяжение ионов как разноименно заряженных тел. Ионная связь — крайний случай поляризации ковалентной полярной связи. Образуется между типичными металлом и неметаллом. При этом электроны у металла полностью переходят к неметаллу. Образуются ионы.
простые ионы – F–, Cl–, Br–, I–, H–, H+ … сложные ионы – CN–, SCN–, NO2–, OH–
В узлах кристаллической решетки помещаются ионы разных знаков. Силы взаимодействия между ними являются в основном электростатическими (кулоновскими). Связь между такими частицами называется гетерополярной или ионной.
Электростатическое воздействие на частицу вызывает в ней смещение электронного облака относительно ядра - поляризацию. Величина этого смещения пропорциональна поляризуемости частицы. Поляризация ионов сочетает их поляризуемость и поляризующее действие.
Метод молекулярных орбиталей (МО). Связывающие и разрыхляющие МО, сигма- и пи- МО. Энергетические диаграммы МО и порядок заполнения орбиталей электронами для двухатомных молекул элементов 2 периода на примере молекул типа А2 ,AB: O2, HF, LiF.
Основные положения МО: 1) вся молекула рассматривается как единое целое, сост. из ядер из электронов бывших атомов.
2) все электроны явл. общими для всех ядер, т.е. химические связи являются многоцентровыми и простираются между ядрами всей молекулы. 3) для решения уравнений как и в случае расчета атомных систем вводится понятие вводного электронного притяжения, которое предполагает, что можно рассматривать каждый электрон в движущемся и усредненном поле остальных электронов молекулы.
Электроны на связывающих молекулярных орбиталях упрочняют связь, на разрыхляющих как бы дестабилизируют (расшатывают). Молекула является устойчивой лишь в том случае, если число электронов на связывающих орбиталях превышает число электронов на разрыхляющих.
На связывающей МО электрон большую часть времени пребывает между ядрами (повышается электронная плотность), способствуя их химическому связыванию.
Нa разрыхляющей же МО электрон большую часть времени находится за ядрами, вызывая отталкивание ядер друг от друга.