Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
HIMIYa_EKZAMYeN.doc
Скачиваний:
3
Добавлен:
02.08.2019
Размер:
515.58 Кб
Скачать

58)Восстановители; Окислители

Металлы; Галогены

Водород; Перманганат калия(KMnO4)

Уголь- Манганат калия (K2MnO4)

Окись углерода (II) (CO)-Оксид марганца (IV) (MnO2)

Сероводород (H2S)-Дихромат калия (K2Cr2O7)

Оксид серы (IV) (SO2)-Хромат калия (K2CrO4)

Сернистая кислота H2SO3 и ее соли-Азотная кислота (HNO3)

Галогеноводородные кислоты и их соли-Серная кислота (H2SO4) конц.

Катионы металлов в низших степенях окисления: SnCl2-Оксид меди(II) (CuO)

Азотистая кислота HNO2-Оксид свинца(IV) (PbO2)

Аммиак NH3-Оксид серебра (Ag2O)

Гидразин NH2NH2-Пероксид водорода (H2O2)

Оксид азота(II) (NO)-Хлорид железа(III) (FeCl3)

Катод при электролизе-Бертоллетова соль (KClO3)

Металлы-Анод при электролизе

Окислительно-восстановительная двойственность – это способность атома, находящегося в промежуточной степени окисления, быть как восстановителем, так и окислителем, в зависимости от того, с каким веществом он реагирует.

Например, окислительно-восстановительную двойственность проявляют все неметаллы (кроме фтора и кислорода), нитриты, сульфиты, некоторые сложные вещества:

+4 +3

SO2, HNO2

59) Рассмотрим простейший гальванический элемент Даниэля – Якоби, состоящий из двух полуэлементов – цинковой и медной пластин, помещенных в растворы сульфатов цинка и меди соответственно, которые соединены между собой посредством электролитического ключа – например, полоски бумаги, смоченной раствором какого-либо электролита. Схематически данный элемент изображается следующим образом:

Zn / Zn2+ // Cu2+ / Cu

На поверхности каждого из электродов имеет место динамическое равновесие перехода ионов металла из электрода в раствор и обратно, характеризуемое потенциалом ДЭС (зарядом на электроде q). Если соединить медный и цинковый электроды металлическим проводником, немедленно произойдет перераспределение зарядов – электроны начнут перемещаться с электрода с более отрицательным зарядом (в нашем случае – цинкового) на электрод с более положительным зарядом (медный), т.е. в проводнике возникнет электрический ток. Изменение величины заряда каждого из электродов нарушает равновесие – на цинковом электроде начнется процесс перехода ионов из электрода в раствор (окисление металла), на медном – из раствора в электрод (восстановление металла); при этом протекание процесса на одном электроде обусловливает одновременное протекание противоположного процесса на другом:

Zno ––> Zn2+ + 2е-

Сu2+ + 2е- ––> Сuo

Электрод, на котором при работе гальванического элемента протекает процесс окисления, называется анодом, электрод, на котором идет процесс восстановления – катодом. При схематическом изображении гальванических элементов слева записывают анод, справа – катод (стандартный водородный электрод всегда записывают слева). Суммарный окислительно-восстановительный процесс, происходящий в гальваническом элементе, выражается следующим уравнением:

Сu2+ + Zno ––> Сuo + Zn2+

Т.о., гальванический элемент можно определить как прибор для преобразования химической энергии окислительно-восстановительной реакции в электрическую за счет пространственного разделения процессов окисления и восстановления. Работа, которую может совершить электрический ток, вырабатываемый гальваническим элементом, определяется разностью электрических потенциалов между электродами (называемой обычно просто разностью потенциалов) ΔΦ и количеством прошедшего по цепи электричества q:

Работа тока гальванического элемента (и, следовательно, разность потенциалов), будет максимальна при его обратимой работе, когда процессы на электродах протекают бесконечно медленно и сила тока в цепи бесконечно мала. Максимальная разность потенциалов, возникающая при обратимой работе гальванического элемента, есть электродвижущая сила (ЭДС) гальванического элемента.

60) Величина электродного потенциала металлического электрода зависит от температуры и активности (концентрации) иона металла в растворе, в который опущен электрод; математически эта зависимость выражается уравнением Нернста (здесь F – постоянная Фарадея, z – заряд иона):

В уравнении Нернста ε° – стандартный электродный потенциал, равный потенциалу электрода при активности иона металла, равной 1 моль/л. Стандартные электродные потенциалы электродов в водных растворах составляют ряд напряжений. Величина ε° есть мера способности окисленной формы элемента или иона принимать электроны, т.е. восстанавливаться. Иногда различием между концентрацией и активностью иона в растворе пренебрегают, и в уравнении Нернста под знаком логарифма фигурирует концентрация ионов в растворе. Величина электродного потенциала определяет направление процесса, протекающего на электроде при работе гальванического элемента. На полуэлементе, электродный потенциал которого имеет большее (иногда говорят – более положительное) значение, будет протекать процесс восстановления, т.е. данный электрод будет являться катодом.

ОВР протекает в сторону увеличения потенциала.

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]