
- •1. Предикаты и кванторы
- •Определение
- •Примеры
- •Операции над предикатами
- •Логические операции
- •Кванторные операции
- •Примеры
- •Введение в понятие
- •Кванторы в математической логике
- •Свободные и связанные переменные
- •Операции над кванторами
- •2. Комбинаторные правила. Правило птичьих гнёзд. Правило сложения
- •Тема 2. Элементы теории множеств и комбинаторика
- •3. Общие правила комбинаторики
- •Пример 1
- •Пример 2
- •3. Правило умножения
- •4. Размещение с повторениями и без повторений
- •Количество размещений
- •Размещение с повторениями
- •Размещения без повторений
- •Где все это применяется, уже очевидно. Осталось только привести несколько хитрых примеров:
- •5. Сочетания без повторений
- •6. Сочетания с повторениями. Разбитие множеств на части
- •Определение
- •Разбиения конечных множеств
- •Примеры
- •7. Отношения. Представления и свойства отношений
- •8. Отношения эквивалентности. Связь отношений эквивалентности и разбиений множеств
- •Связанные определения
- •Примеры отношений эквивалентности
- •Факторизация отображений
- •9. Отношение эквивалентности. Связь отношений эквивалентности и разбиений множеств Отношение частичного порядка
- •10. Отношения линейного порядка Отношение линейного порядка
- •Упорядоченные множества
- •11. Логические функции. Задание и элементарные функции
- •Основные сведения
- •Нульарные функции
- •Унарные функции
- •Бинарные функции
- •Тернарные функции
- •[Править]Полные системы булевых функций Суперпозиция и замкнутые классы функций
- •Тождественность и двойственность
- •Полнота системы, критерий Поста
- •Представление булевых функций
- •Дизъюнктивная нормальная форма (днф)
- •Конъюнктивная нормальная форма (кнф)
- •Элементарные функции по Лиувиллю
- •Дифференцирование элементарных функций
- •Интегрирование элементарных функций
- •12. Дизъюнктивные нормальные формы
- •Примеры и контрпримеры
- •Построение днф Алгоритм построения днф
- •Пример построения днф
- •Переход от днф к сднф
- •13. Минимизация днф
- •14. Монотонные функции
- •Определения
- •Другая терминология
- •Свойства монотонных функций
- •Условия монотонности функции
- •15. Графы. Представления графов. Пути в графах
- •Путь и цикл в графе. Эйлеровые линии
Пример 1
Выбрать книгу или диск из 10 книг и 12 дисков можно 10 + 12 = 22 способами.
Пример 2
Пусть требуется найти количество слов, составленных не более, чем из 3 букв алфавита {a, b, c, d}. Т.к. слово может состоять из одной буквы или из двух или из трёх букв, то соответствующие количества складываются. По правилу умножения количество n-буквенных слов равно 4n. Тогда ответ на первоначальный вопрос будет 41 + 42 + 43 = 84.
3. Правило умножения
Правило умножения (правило «и») — одно из основных правил комбинаторики. Согласно ему, если элемент A можно выбрать n способами, и при любом выборе A элемент Bможно выбрать m способами, то пару (A, B) можно выбрать n·m способами. Естественным образом обобщается на произвольную длину последовательности.
Примеры
Простой
Выбрать
книгу и диск
из 10 книг и 12 дисков можно
способами.
Количество размещений с повторениями
Если есть множество из n типов элементов, и нужно на каждом из m мест расположить элемент какого-либо типа (типы элементов могут совпадать на разных местах), то количество вариантов этого будет nm.
Составной
Пусть требуется найти количество слов, составленных не более, чем из 3 букв алфавита {a, b, c, d}. Количество n-буквенных слов равно количеству размещений из 4 букв на nмест с повторениями — оно равно 4n. Количество всех слов (так как нужно учитывать любое из слов) будет складываться из количеств одно-, двух- и трёхбуквенных слов. Тогда ответ на первоначальный вопрос будет 41 + 42 + 43 = 84.
4. Размещение с повторениями и без повторений
В комбинаторике размещением называется расположение «предметов» на некоторых «местах» при условии, что каждое место занято в точности одним предметом и все предметы различны. Более формально, размеще́нием (из n по k) называется упорядоченный набор из k различных элементов некоторого n-элементного множества.
Например,
—
это 4-элементное размещение 6-элементного
множества {1,2,3,4,5,6}.
В отличие от сочетаний, размещения учитывают порядок следования предметов. Так, например, наборы < 2,1,3 > и < 3,2,1 > являются различными, хотя состоят из одних и тех же элементов {1,2,3} (то есть совпадают как сочетания).
Количество размещений
Количество
размещений из n по k,
обозначаемое
,
равно убывающему
факториалу:
Последнее
выражение имеет естественную комбинаторную
интерпретацию: каждое размещение
из n по k однозначно
соответствует некоторому сочетанию
из n по k и
некоторой перестановке элементов
этого сочетания; число сочетаний
из n по k равно биномиальному
коэффициенту
,
в то время как перестановок на k элементах
ровноk! штук.
При k=n количество размещений равно количеству перестановок порядка n:[1][2][3]
Размещение с повторениями
Размещение с повторениями или выборка с возвращением[4] — это размещение «предметов» в предположении, что каждый «предмет» может участвовать в размещении несколько раз. По правилу умножения количество размещений с повторениями из n по k равно:[5][1][4]
Например, количество вариантов 3-x значного кода, в котором каждый знак является цифрой от 0 до 9 и может повторяться, равно: