
- •1. Предикаты и кванторы
- •Определение
- •Примеры
- •Операции над предикатами
- •Логические операции
- •Кванторные операции
- •Примеры
- •Введение в понятие
- •Кванторы в математической логике
- •Свободные и связанные переменные
- •Операции над кванторами
- •2. Комбинаторные правила. Правило птичьих гнёзд. Правило сложения
- •Тема 2. Элементы теории множеств и комбинаторика
- •3. Общие правила комбинаторики
- •Пример 1
- •Пример 2
- •3. Правило умножения
- •4. Размещение с повторениями и без повторений
- •Количество размещений
- •Размещение с повторениями
- •Размещения без повторений
- •Где все это применяется, уже очевидно. Осталось только привести несколько хитрых примеров:
- •5. Сочетания без повторений
- •6. Сочетания с повторениями. Разбитие множеств на части
- •Определение
- •Разбиения конечных множеств
- •Примеры
- •7. Отношения. Представления и свойства отношений
- •8. Отношения эквивалентности. Связь отношений эквивалентности и разбиений множеств
- •Связанные определения
- •Примеры отношений эквивалентности
- •Факторизация отображений
- •9. Отношение эквивалентности. Связь отношений эквивалентности и разбиений множеств Отношение частичного порядка
- •10. Отношения линейного порядка Отношение линейного порядка
- •Упорядоченные множества
- •11. Логические функции. Задание и элементарные функции
- •Основные сведения
- •Нульарные функции
- •Унарные функции
- •Бинарные функции
- •Тернарные функции
- •[Править]Полные системы булевых функций Суперпозиция и замкнутые классы функций
- •Тождественность и двойственность
- •Полнота системы, критерий Поста
- •Представление булевых функций
- •Дизъюнктивная нормальная форма (днф)
- •Конъюнктивная нормальная форма (кнф)
- •Элементарные функции по Лиувиллю
- •Дифференцирование элементарных функций
- •Интегрирование элементарных функций
- •12. Дизъюнктивные нормальные формы
- •Примеры и контрпримеры
- •Построение днф Алгоритм построения днф
- •Пример построения днф
- •Переход от днф к сднф
- •13. Минимизация днф
- •14. Монотонные функции
- •Определения
- •Другая терминология
- •Свойства монотонных функций
- •Условия монотонности функции
- •15. Графы. Представления графов. Пути в графах
- •Путь и цикл в графе. Эйлеровые линии
1. Предикаты и кванторы
Предикат — любое математическое высказывание, в котором есть, по меньшей мере, одна переменная. Предикат является основным объектом изучения логики первого порядка.
Определение
Предикат —
это функция с
множеством значений {0,1} (или
«ложь» и «истина»), определённая на
множестве
.
Таким образом, каждый набор элементов
множества M характеризуется
либо как «истинный», либо как «ложный».
Предикат можно связать с математическим отношением: если n-ка принадлежит отношению, то предикат будет возвращать на ней 1. В частности, одноместный предикат определяет отношение принадлежности некоторому множеству.
Предикат — один из элементов логики первого и высших порядков. Начиная с логики второго порядка, в формулах можно ставить кванторы по предикатам.
Предикат называют тождественно-истинным и пишут:
если на любом наборе аргументов он принимает значение 1.
Предикат называют тождественно-ложным и пишут:
если на любом наборе аргументов он принимает значение 0.
Предикат называют выполнимым, если хотя бы на одном наборе аргументов он принимает значение 1.
Так как предикаты принимают только два значения, то к ним применимы все операции булевой алгебры, например: отрицание, импликация, конъюнкция, дизъюнкция и т. д
Примеры
Например, обозначим предикатом EQ(x, y) отношение равенства («x = y»), где x и y принадлежат множеству вещественных чисел. В этом случае предикат EQ будет принимать истинное значение для всех равных x и y.
Более житейским примером может служить предикат ПРОЖИВАЕТ(x, y, z) для отношения «x проживает в городе y на улице z» или ЛЮБИТ(x, y) для «x любит y», где множество M — это множество всех людей.
Предикат — это то, что утверждается или отрицается о субъекте суждения.
x,y,z принадлежит R
Операции над предикатами
Предикаты, так же, как высказывания, принимают два значения истинное и ложное, поэтому к ним применимы все операции логики высказываний. Рассмотрим применение операций логики высказываний к предикатам на примерах одноместных предикатов.
Логические операции
Конъюнкцией двух
предикатов А(х) и В(х) называется новый
предикат
,
который принимает значение «истина»
при тех и только тех значениях х Т, при
которых каждый из предикатов принимает
значение «истина», и принимает значение
«ложь» во всех остальных случаях.
Множеством истинности Т предиката А(х)
В(х), х Х является пересечение множеств
истинности предикатов А(х) – Т1 и В(х) –
Т2, т.е. Т= Т1 ∩Т2. Например: А(х): «х – четное
число», В(х): « х кратно 3». А(х) В(х) –
«х – четное число и х кратно 3». Т.е.
предикат «х делится на 6».
Дизъюнкцией двух
предикатов А(х) и В(х) называется новый
предикат
,
который принимает значение «ложь» при
тех и только тех значениях х Т, при
которых каждый из предикатов принимает
значение «ложь» и принимает значение
«истина» во всех остальных случаях.
Областью истинности предиката А(х) В(х)
является объединение областей истинности
предикатов А(х) В(х).
Отрицанием предиката А(х) называется новый предикат , который принимает значение «истина» при всех значениях х Т, при которых предикат А(х) принимает значение «ложь», и принимает значение «ложь», если А(х) принимает значение «истина». Множеством истинности предиката , х Х является дополнение Т' к множеству Т в множестве Х.
Импликацией предикатов А(х) и В(х) называется новый предикат А(х) В(х), который является ложным при тех и только тех значениях х Т, при которых А(х) принимает значение «истина», а В(х) – значение «ложь» и принимает значение «истина» во всех остальных случаях. Читают: «Если А(х), то В(х)». Например. А(х): «Натуральное число х делится на 3». В(х): «Натуральное число х делится на 4», можно составить предикат: «Если натуральное число х делится на 3, то оно делится и на 4». Множеством истинности предиката А(х) В(х) является объединение множества Т2 – истинности предиката В(х) и дополнения к множеству Т1 истинности предиката А(х).