
- •Закон сохранения массы.
- •Закон постоянства состава
- •1) Состав оксидов азота (в процентах по массе) выражается следующими числами:
- •Закон эквивалентов
- •Закон Авогадро
- •Стандартная энтальпия образования (стандартная теплота образования)
- •Температурная зависимость теплового эффекта (энтальпии) реакции
- •Внутренняя энергия
- •Идеальные газы
- •Внутренняя энергия вещества, тела, системы
- •Энтропия
- •Потенциал Гиббса
- •Изопроцессы
- •Следствия из закона Гесса
- •Скорость химической реакции
- •Правило Вант-Гоффа
- •Закон действующих масс в химической термодинамике
- •Влияние давления
- •Массовая доля (также называют процентной концентрацией)
- •Нормальная концентрация (мольная концентрация эквивалента)
- •Второй закон Рауля
- •Криоскопия
- •Растворы электролитов и неэлектролитов
- •Значения pH в растворах различной кислотности
- •Закон разбавления Оствальда
- •Гидролиз органических веществ
- •Теории кислот и оснований
- •Эволюция представлений о кислотно-основных взаимодействиях
- •Теория электролитической диссоциации Аррениуса-Оствальда
- •Протонная теория Брёнстеда-Лоури
- •Электронная теория Льюиса
- •Общая теория Усановича
- •Окисление
- •Восстановление
- •Виды окислительно-восстановительных реакций
- •Окисление, восстановление
- •Электролиз
- •Гальванические элементы
- •Электрические аккумуляторы
- •Топливные элементы
- •Коррозия металлов
- •Химическая коррозия
- •Виды коррозии
- •Борьба с коррозией
- •Система холодного цинкования
- •Газотермическое напыление
- •Цинкование
Электрические аккумуляторы
Электрический аккумулятор — химический источник тока многоразового действия (то есть в отличие от гальванического элемента химические реакции, непосредственно превращаемые в электрическую энергию, многократно обратимы). Электрические аккумуляторы используются для накопления энергии и автономного питания различных устройств.
Смотри также Категория:Аккумуляторы.
Железо-воздушный аккумулятор
Железо-никелевый аккумулятор
Лантан-фторидный аккумулятор
Литий-железо-сульфидный аккумулятор
Литий-ионный аккумулятор
Литий-полимерный аккумулятор
Литий-фторный аккумулятор
Литий-хлорный аккумулятор
Литий-серный аккумулятор
Марганцево-оловянный элемент
Натрий-никель-хлоридный аккумулятор
Натрий-серный аккумулятор
Никель-кадмиевый аккумулятор
Никель-металл-гидридный аккумулятор
Никель-цинковый аккумулятор
Свинцово-водородный аккумулятор
Свинцово-кислотный аккумулятор
Свинцово-оловянный аккумулятор
Серебряно-кадмиевый аккумулятор
Серебряно-цинковый аккумулятор
Цинк-бромный аккумулятор
Цинк-воздушный аккумулятор
Цинк-хлорный аккумулятор
Топливные элементы
Топливный элемент — электрохимическое устройство, подобное гальваническому элементу, но отличающееся от него тем, что вещества для электрохимической реакции подаются в него извне — в отличие от ограниченного количества энергии, запасенного в гальваническом элементе или аккумуляторе.
Смотри также Категория:Топливные элементы.
Прямой метанольный топливный элемент
Твердооксидный топливный элемент
Щелочной топливный элемент
Твердооксидный топливный элемент (англ. Solid-oxide fuel cells — SOFC);
Топливный элемент с протонообменной мембраной (англ. Proton-exchange membrane fuel cell — PEMFC);
Обратимый топливный элемент (англ. Reversible Fuel Cell);
Прямой метанольный топливный элемент (англ. Direct-methanol fuel cell — DMFC);
Расплавной карбонатный топливный элемент (англ. Molten-carbonate fuel cells — MCFC);
Фосфорнокислый топливный элемент (англ. Phosphoric-acid fuel cells — PAFC);
Щелочной топливный элемент (англ. Alkaline fuel cells — AFC).
Коррозия металлов
Коррозия металлов — разрушение металлов вследствие химического или электрохимического взаимодействия их с коррозионной средой. [2] Для процесса коррозии следует применять термин «коррозионный процесс», а для результата процесса — «коррозионное разрушение». Образование гальванических пар с пользой применяют для создания батарей и аккумуляторов. С другой стороны, образование такой пары приводит к неблагоприятному процессу, жертвой которого становится целый ряд металлов, — коррозии. Под коррозией понимают происходящее на поверхности электрохимическое или химическое разрушение металлического материала. Наиболее часто при коррозии металл окисляется с образованием ионов металла, которые при дальнейших превращениях дают различные продукты коррозии. Коррозия может быть вызвана как химическим, так и электрохимическим процессом. Соответственно, различают химическую и электрохимическую коррозию металлов.
Типы коррозии
Электрохимическая коррозия
Разрушение металла под воздействием возникающих в коррозионной среде гальванических элементов называют электрохимической коррозией. Не следует путать с электрохимической коррозией коррозию однородного материала, например, ржавление железа или т.п. При электрохимической коррозии (наиболее частая форма коррозии) всегда требуется наличие электролита (Конденсат, дождевая вода и т. д.), с которым соприкасаются электроды - либо различные элементы структуры материала, либо два различных соприкасающихся материала с различающимися окислительно-восстановительными потенциалами. Если в воде растворены ионы солей, кислот, или т.п., электропроводность ее повышается, и скорость процесса увеличивается.
При соприкосновении двух металлов с различными окислительно-восстановительными потенциалами и погружении их в раствор электролита, например, дождевой воды с растворенным углекислым газом CO2, образуется гальванический элемент, так называемый коррозионный элемент. Он представляет собой не что иное, как замкнутую гальваническую ячейку. В ней происходит медленное растворение металлического материала с более низким окислительно-восстановительным потенциалом; второй электрод в паре, как правило, не корродирует. Этот вид коррозии особо присущ металлам с высокими отрицательными потенциалами. Так, совсем небольшого количества примеси на поверхности металла с большим редокспотенциалом уже достаточно для возникновения коррозионного элемента. Особо подвержены риску места соприкосновения металлов с различными потенциалами, например, сварочные швы или заклёпки.
Если растворяющийся электрод коррозионно-стоек, процесс коррозии замедляется. На этом основана, например, защита железных изделий от коррозии путём оцинковки — цинк имеет более отрицательный потенциал, чем железо, поэтому в такой паре железо восстанавливается, а цинк должен корродировать. Однако в связи с образованием на поверхности цинка оксидной плёнки процесс коррозии сильно замедляется.
Водородная и кислородная коррозия
Если происходит восстановление ионов H3O+ или молекул воды H2O, говорят о водородной коррозии или коррозии с водородной деполяризацией. Восстановление ионов происходит по следующей схеме:
2H3O+ + 2e− → 2H2O + H2
или
2H2O + 2e− → 2OH− + H2
Если водород не выделяется, что часто происходит в нейтральной или сильно щелочной среде, происходит восстановление кислорода и здесь говорят о кислородной коррозии или коррозии с кислородной деполяризацией:
O2 + 2H2O + 4e− → 4OH−
Коррозионный элемент может образовываться не только при соприкосновении двух различных металлов. Коррозионный элемент образуется и в случае одного металла, если, например, структура поверхности неоднородна.