
- •Кинематика материальной точки. Инерциальные системы отсчёта.
- •Первый и второй законы Ньютона. Сила, масса, импульс.
- •Третий закон Ньютона. Закон сохранения импульса. Центр масс.
- •Работа переменной силы. Потенциальное поле сил.
- •Кинетическая и потенциальная энергия. Законы сохранения энергии.
- •Кинематика вращательного движения. Момент сил. Условия равновесия твердого тела.
- •Основное уравнение динамики вращательного движения. Момент инерции
- •Работа внешних сил при вращательном движении. Кинетическая энергия при вращательном движении.
- •Момент импульса твердого тела. Закон сохранения момента импульса.
- •Гармонические колебания. Скорость, ускорение. Сила в колебательном движении.
- •Энергия гармонического колебания.
- •Вынужденные колебания. Резонанс.
- •Волны. Продольные и поперечные. Уравнение волны.
- •Термодинамический и молекулярно-кинетический методы изучения макроскопических тел. Изопроцессы.
- •Уравнение состояния идеального газа. Универсальная газовая постоянная.
- •Основное уравнение молекулярно-кинетической теории газов для давления и энергии. Выводы из уравнения.
- •Закон распределения молекул по скоростям Максвелла и Больцмана.
- •Число столкновений и средняя длина свободного пробега молекул.
- •Явления переноса в газах. Диффузия.
- •Внутренне трение. Теплопроводность.
- •Внутренняя энергия системы. Степени свободы. Теплоемкость.
- •25. Первое начало термодинамики ми его применение к изопроцессам.
- •Адиабатический процесс и его уравнение.
- •Работа газа при изопроцессах.
- •Обратимые и необратимые процессы. Второе начало термодинамики.
- •Энтропия.
- •Второе начало термодинамики, его статистический смысл.
- •Реальные газы. Уравнение Ван-дер-Ваальса.
- •Изотермы Ван-дер-Ваальса. Внутренняя энергия реального газа.
- •Эффект Джоуля-Томпсона.
- •Электростатическое поле. Закон Кулона.
- •Поток вектора напряженности (смещение). Теорема Остроградского-Гаусса.
- •Электроемкость конденсатора.
- •Диэлектрики в электрическом поле.
- •Поляризация диэлектриков. Электрическое смещение. Диэлектрическая проницаемость среды.
- •Сегнетоэлектрики. Пьезоэффект.
- •Недостатки классической теории электропроводности металлов.
- •Зависимость сопротивления от температуры. Сверхпроводимость.
- •Законы Кирхгофа.
Вынужденные колебания. Резонанс.
Вынужденные колебания — колебания, происходящие под воздействием внешних сил, меняющихся во времени. Внешняя периодическая сила, называемая вынуждающей, сообщает колебательной системе дополнительную энергию, которая идет на восполнение энергетических потерь, происходящих из-за трения. Если вынуждающая сила изменяется во времени по закону синуса или косинуса, то вынужденные колебания будут гармоническими и незатухающими.
В отличие от свободных колебаний, когда система получает энергию лишь один раз (при выведении системы из состояния равновесия), в случае вынужденных колебаний система поглощает эту энергию от источника внешней периодической силы непрерывно. Эта энергия восполняет потери, расходуемые на преодоление трения, и потому полная энергия колебательной системы no-прежнему остается неизменной.
Явление резкого возрастания амплитуды вынужденных колебаний при приближении вынуждающей частоты ω к частоте собственных колебаний системы называется резонансом.
Если
затухание существует
то
амплитуда вынужденных колебаний
достигает максимального значения, когда
знаменатель правой части для уравнения
(7.23) достигает минимума. Приравнивая
нулю первую производную по ω от
подкоренного выражения, получим условие
его минимума, для которого
,
где
-
называют резонансной частотой.
обозначает
то значение циклической частоты ω
вынуждающей силы, при котором
.
Из
последней формулы следует, что для
консервативной системы
,
а для диссипативной системы
несколько
меньше собственной циклический частоты.
С увеличением коэффициента затухания
ω явление резонанса проявляется все
слабее, и, наконец при
исчезает
совсем.
Явление резонанса используется для усиления колебаний, например, электромагнитных. Однако при конструировании различных машин и сооружений необходимо учитывать даже самую небольшую периодическую силу с тем, чтобы предотвратить нежелательные последствия резонанса.
Волны. Продольные и поперечные. Уравнение волны.
Волна́ — изменение состояния среды или физического поля (возмущение), распространяющееся либо колеблющееся в пространстве и времени или в фазовом пространстве. Другими словами, «…волнами или волной называют изменяющееся со временем пространственное чередование максимумов и минимумов любой физической величины — например, плотности вещества, напряжённости электрического поля, температуры[1]». волны, рассматриваемый параметр которых (смещение молекул, механическое напряжение, и т.д.) изменяется периодически вдоль оси распространения, называютсяпродольными волнами. Если колебания происходят перпендикулярно оси распространения волны (как у электромагнитных волн, например), то такие волны называютсяпоперечными.
Если
взаимосвязь между частицами среды
осуществляется силами упругости,
возникающими вследствие деформации
среды при передаче колебаний от одних
частиц к другим, то волны называются
упругими. К ним относятся звуковые,
ультразвуковые, сейсмические и др.
волны. На первой анимации изображён
процесс распространения
продольной упругой волны в решётке,
состоящей из шариков, соединённых
упругими пружинками. Каждый шарик
колеблется по гармоническому закону в
продольном направлении, совпадающем с
направлением распространения волны.
Амплитуда каждого шарика одинакова и
равна A,
а фаза колебаний линейно растёт с
увеличением номера шарика на Dj т.е.
x0=Asin(wt); x1=Asin(wt+Dj); x2=Asin(wt+2Dj); x3=Asin(wt+3Dj); и т.д.
где w -частота волны, t - время, Dj - изменение фазы от шарика к шарику
В
поперечной волне колебания происходят
в направлении, перпендикулярном
направлению распространения волны. Как
и в случае продольных волн амплитуды
колебаний всех шариков одинаковы, а
фаза линейно изменяется от шарика к
шарику
y0=Bsin(wt); y1=Bsin(wt+Dj); y2=Bsin(wt+2Dj); y3=Bsin(wt+3Dj); и т.д.
В общем виде уравнение распространения волны может быть записано в виде: z = Acos(wt - kx), где z - координата, по которой происходит движение частиц, x - координата оси, вдоль которой распространяется волна, k - волновое число, равное w / v, v - скорость распространения волны. Зная частоту волны и скорость её распространения, мы можем найти сдвиг фаз между соседними шариками (частицами): Dj = (w / v)a, где a - расстояние между шариками в решётке.