
- •Кинематика материальной точки. Инерциальные системы отсчёта.
- •Первый и второй законы Ньютона. Сила, масса, импульс.
- •Третий закон Ньютона. Закон сохранения импульса. Центр масс.
- •Работа переменной силы. Потенциальное поле сил.
- •Кинетическая и потенциальная энергия. Законы сохранения энергии.
- •Кинематика вращательного движения. Момент сил. Условия равновесия твердого тела.
- •Основное уравнение динамики вращательного движения. Момент инерции
- •Работа внешних сил при вращательном движении. Кинетическая энергия при вращательном движении.
- •Момент импульса твердого тела. Закон сохранения момента импульса.
- •Гармонические колебания. Скорость, ускорение. Сила в колебательном движении.
- •Энергия гармонического колебания.
- •Вынужденные колебания. Резонанс.
- •Волны. Продольные и поперечные. Уравнение волны.
- •Термодинамический и молекулярно-кинетический методы изучения макроскопических тел. Изопроцессы.
- •Уравнение состояния идеального газа. Универсальная газовая постоянная.
- •Основное уравнение молекулярно-кинетической теории газов для давления и энергии. Выводы из уравнения.
- •Закон распределения молекул по скоростям Максвелла и Больцмана.
- •Число столкновений и средняя длина свободного пробега молекул.
- •Явления переноса в газах. Диффузия.
- •Внутренне трение. Теплопроводность.
- •Внутренняя энергия системы. Степени свободы. Теплоемкость.
- •25. Первое начало термодинамики ми его применение к изопроцессам.
- •Адиабатический процесс и его уравнение.
- •Работа газа при изопроцессах.
- •Обратимые и необратимые процессы. Второе начало термодинамики.
- •Энтропия.
- •Второе начало термодинамики, его статистический смысл.
- •Реальные газы. Уравнение Ван-дер-Ваальса.
- •Изотермы Ван-дер-Ваальса. Внутренняя энергия реального газа.
- •Эффект Джоуля-Томпсона.
- •Электростатическое поле. Закон Кулона.
- •Поток вектора напряженности (смещение). Теорема Остроградского-Гаусса.
- •Электроемкость конденсатора.
- •Диэлектрики в электрическом поле.
- •Поляризация диэлектриков. Электрическое смещение. Диэлектрическая проницаемость среды.
- •Сегнетоэлектрики. Пьезоэффект.
- •Недостатки классической теории электропроводности металлов.
- •Зависимость сопротивления от температуры. Сверхпроводимость.
- •Законы Кирхгофа.
Кинематика вращательного движения. Момент сил. Условия равновесия твердого тела.
При
вращательном движении, в отличие от
поступательного, скорости
разных
точек тела неодинаковы.Поэтому
скорость
какой-либо
точки вращающегося тела не может служить
характеристикойдвижения всего тела.
Отдельные
точки вращающегося тела имеют различные
линейные скорости
.
Скорость каждой точки, будучи направлена
по касательной к соответствующей
окружности, непрерывно изменяет свое
направление. Величина
скорости
определяется
скоростью вращения тела
и
расстоянием R рассматриваемой точки от
оси вращения.
Сила приложенная к твердому телу, которое может вращаться вокруг некоторой точки, создает момент силы. Действие момента силы аналогично действию пары сил.
Момент силы относительно некоторой точки — это векторное произведение силы на кратчайшее расстояние от этой точки до линии действия силы.
Момент силы — аксиальный вектор. Он направлен вдоль оси вращения. Направление вектора момента силы определяется правилом буравчика, а величина его равна M. M= F·l= F·r·sin(α)
Силы, действующие на твердое тело, могут вызывать как поступательное, так и вращательное движение тела. Чтобы тело находилось в равновесии, необходимо выполнение следующих условий.
Необходимые условия равновесия.
Равнодействующая всех действующих на тело сил равна нулю.
Сумма всех моментов сил равна нулю.
Основное уравнение динамики вращательного движения. Момент инерции
Основое уравнение динамики вращательного движения материальной точки - угловое ускорение точки при ее вращении вокруг неподвижной оси пропорционально вращающему моменту и обратно пропорционально моменту инерции.
М = E*J или E = M/J
Или
Сравнивая
полученное выражение со вторым законом
Ньютона с поступательным законом, видим,
что момент инерции J является мерой
инертности тела во вращательном движении.
Как и масса величина аддитивная.Момент
инерции тонкого
кольца:
изменение
момента количества движения твердого
тела
,
равно импульсу момента
всех
внешних сил, действующих на это тело.
Момент
инерции — скалярная физическая
величина,
мера инертности
тела во вращательном
движении вокруг
оси, подобно тому, как масса тела является
мерой его инертности в поступательном
движении.
Характеризуется распределением масс
в теле: момент инерции равен сумме
произведений элементарных масс на
квадрат их расстояний до базового
множества (точки, прямой или плоскости).
Работа внешних сил при вращательном движении. Кинетическая энергия при вращательном движении.
Полная работа внешних сил при вращательном движении тела равна произведению момента этих сил относительно оси вращения на угол поворота тела за время действия сил. ∆ A= М∆
Кинетическая энергия вращательного движения — энергия тела, связанная с его вращением.
Основные кинематические характеристики вращательного движения тела — его угловая скорость (ω) и угловое ускорение. Основные динамические характеристики вращательного движения — момент импульса относительно оси вращения z:
Kz = Izω и кинетическая энергия
где Iz — момент инерции тела относительно оси вращения.
Если система состоит из нескольких тел, то ее кинетическая энергия равна, очевидно, сумме кинетических энергий этих тел:
Кинетическая
энергия – скалярная и всегда положительная
величина.