
- •Кинематика материальной точки. Инерциальные системы отсчёта.
- •Первый и второй законы Ньютона. Сила, масса, импульс.
- •Третий закон Ньютона. Закон сохранения импульса. Центр масс.
- •Работа переменной силы. Потенциальное поле сил.
- •Кинетическая и потенциальная энергия. Законы сохранения энергии.
- •Кинематика вращательного движения. Момент сил. Условия равновесия твердого тела.
- •Основное уравнение динамики вращательного движения. Момент инерции
- •Работа внешних сил при вращательном движении. Кинетическая энергия при вращательном движении.
- •Момент импульса твердого тела. Закон сохранения момента импульса.
- •Гармонические колебания. Скорость, ускорение. Сила в колебательном движении.
- •Энергия гармонического колебания.
- •Вынужденные колебания. Резонанс.
- •Волны. Продольные и поперечные. Уравнение волны.
- •Термодинамический и молекулярно-кинетический методы изучения макроскопических тел. Изопроцессы.
- •Уравнение состояния идеального газа. Универсальная газовая постоянная.
- •Основное уравнение молекулярно-кинетической теории газов для давления и энергии. Выводы из уравнения.
- •Закон распределения молекул по скоростям Максвелла и Больцмана.
- •Число столкновений и средняя длина свободного пробега молекул.
- •Явления переноса в газах. Диффузия.
- •Внутренне трение. Теплопроводность.
- •Внутренняя энергия системы. Степени свободы. Теплоемкость.
- •25. Первое начало термодинамики ми его применение к изопроцессам.
- •Адиабатический процесс и его уравнение.
- •Работа газа при изопроцессах.
- •Обратимые и необратимые процессы. Второе начало термодинамики.
- •Энтропия.
- •Второе начало термодинамики, его статистический смысл.
- •Реальные газы. Уравнение Ван-дер-Ваальса.
- •Изотермы Ван-дер-Ваальса. Внутренняя энергия реального газа.
- •Эффект Джоуля-Томпсона.
- •Электростатическое поле. Закон Кулона.
- •Поток вектора напряженности (смещение). Теорема Остроградского-Гаусса.
- •Электроемкость конденсатора.
- •Диэлектрики в электрическом поле.
- •Поляризация диэлектриков. Электрическое смещение. Диэлектрическая проницаемость среды.
- •Сегнетоэлектрики. Пьезоэффект.
- •Недостатки классической теории электропроводности металлов.
- •Зависимость сопротивления от температуры. Сверхпроводимость.
- •Законы Кирхгофа.
Работа переменной силы. Потенциальное поле сил.
Если сила или равнодействующая сил изменяет свою величину или направление (движение по криволинейной траектории, причем угол α ≠ 900), то работа ∆А, совершаемая переменной силой F (или Fрез) на конечном участке траектории вычисляется следующим образом.
На
рисунке 14 представлен график зависимости
силы F от пути S. Разобьем весь путь на N
участков. Перемещение и действующая
сила на каждом участке соответственно
равны F i и
∆ r i.
Тогда работа А, совершаемая силой F, равна
алгебраической сумме работ, совершаемых
каждой из сил F i на
своем
малом
участке
А = ∆А1 +
∆А2 +....+
∆А N =
( F1∙∆ r1)
+ (F 2∙∆ r2)
+ ...+( F N∙∆ rN)
=
( Fi∙∆ ri),где
i = 1,2...... N - номер элементарного
участка траектории.
Потенциальное поле - это поле, в котором работа силы не зависит от формы пути, а зависит лишь от положений начальной и конечной точек траектории, а силы, действующие в нем, - консервативными.
Консервативные (потенциальные) силы - это силы, зависящие только от координат точек системы и работа которых не зависит от пути перехода из начального в конечное положение, а определяется только начальным и конечным положением.
В потенциальном поле работа сил по любому замкнутому контуру равна нулю.
Кинетическая и потенциальная энергия. Законы сохранения энергии.
Физическая величина, равная половине произведения массы тела на квадрат скорости называется кинетической энергией. Работа равнодействующей сил, приложенных к телу, равна изменению кинетической энергии. Физическая величина, равная произведению массы тела на модуль ускорения свободного падения и высоту, на которую поднято тело над поверхностью с нулевым потенциалом, называют потенциальной энергией тела. Изменение потенциальной энергии характеризует работу силы тяжести по перемещении тела. Эта работа равна изменению потенциальной энергии, взятому с противоположным знаком. Тело находящееся ниже поверхности земли, имеет отрицательную потенциальную энергию. Потенциальную энергию имеют не только поднятые тела. Рассмотрим работу, совершаемую силой упругости при деформации пружины. Силу упругости прямо пропорциональна деформации, и ее среднее значение будет равно, работа равна произведению силы на деформацию, или же . Физическая величина, равная половине произведения жесткости тела на квадрат деформации называется потенциальной энергией деформированного тела. Важной характеристикой потенциальной энергии является то, что тело не может обладать ею, не взаимодействуя с другими телами.Потенциальная энергия характеризует взаимодействующие тела, кинетическая – движущиеся. И та, и другая возникают в результате взаимодействия тел. Если несколько тел взаимодействую между собой только силами тяготения и силами упругости, и никакие внешние силы на них не действуют (или же их равнодействующая равна нулю), то при любых взаимодействиях тел работа сил упругости или сил тяготения равна изменению потенциальной энергии, взятой с противоположным знаком. В то же время, по теореме о кинетической энергии (изменение кинетической энергии тела равно работе внешних сил) работа тех же сил равна изменению кинетической энергии.Из этого равенства следует, что сумма кинетической и потенциальной энергий тел, составляющих замкнутую систему и взаимодействующих между собой силами тяготения и упругости, остается постоянной. Сумма кинетической и потенциальной энергий тел называется полной механической энергией. Полная механическая энергия замкнутой системы тел, взаимодействующих между собой силами тяготения и упругости, остается неизменной. Работа сил тяготения и упругости равна, с одной стороны, увеличению кинетической энергии, а с другой – уменьшению потенциальной, то есть работа равна энергии, превратившейся из одного вида в другой.