
- •Кинематика материальной точки. Инерциальные системы отсчёта.
- •Первый и второй законы Ньютона. Сила, масса, импульс.
- •Третий закон Ньютона. Закон сохранения импульса. Центр масс.
- •Работа переменной силы. Потенциальное поле сил.
- •Кинетическая и потенциальная энергия. Законы сохранения энергии.
- •Кинематика вращательного движения. Момент сил. Условия равновесия твердого тела.
- •Основное уравнение динамики вращательного движения. Момент инерции
- •Работа внешних сил при вращательном движении. Кинетическая энергия при вращательном движении.
- •Момент импульса твердого тела. Закон сохранения момента импульса.
- •Гармонические колебания. Скорость, ускорение. Сила в колебательном движении.
- •Энергия гармонического колебания.
- •Вынужденные колебания. Резонанс.
- •Волны. Продольные и поперечные. Уравнение волны.
- •Термодинамический и молекулярно-кинетический методы изучения макроскопических тел. Изопроцессы.
- •Уравнение состояния идеального газа. Универсальная газовая постоянная.
- •Основное уравнение молекулярно-кинетической теории газов для давления и энергии. Выводы из уравнения.
- •Закон распределения молекул по скоростям Максвелла и Больцмана.
- •Число столкновений и средняя длина свободного пробега молекул.
- •Явления переноса в газах. Диффузия.
- •Внутренне трение. Теплопроводность.
- •Внутренняя энергия системы. Степени свободы. Теплоемкость.
- •25. Первое начало термодинамики ми его применение к изопроцессам.
- •Адиабатический процесс и его уравнение.
- •Работа газа при изопроцессах.
- •Обратимые и необратимые процессы. Второе начало термодинамики.
- •Энтропия.
- •Второе начало термодинамики, его статистический смысл.
- •Реальные газы. Уравнение Ван-дер-Ваальса.
- •Изотермы Ван-дер-Ваальса. Внутренняя энергия реального газа.
- •Эффект Джоуля-Томпсона.
- •Электростатическое поле. Закон Кулона.
- •Поток вектора напряженности (смещение). Теорема Остроградского-Гаусса.
- •Электроемкость конденсатора.
- •Диэлектрики в электрическом поле.
- •Поляризация диэлектриков. Электрическое смещение. Диэлектрическая проницаемость среды.
- •Сегнетоэлектрики. Пьезоэффект.
- •Недостатки классической теории электропроводности металлов.
- •Зависимость сопротивления от температуры. Сверхпроводимость.
- •Законы Кирхгофа.
Обратимые и необратимые процессы. Второе начало термодинамики.
Обратимым процессом называют такой процесс, который может быть проведен в обратном направлении таким образом, что система будет проходить через те же состояния, что и при прямом ходе, но в обратной последовательности. Обратимым может быть только равновесный процесс.
Обратимый
процесс обладает следующими свойствами:
если при прямом ходе на каком-то
элементарном участке (рис. 9.8.) система
получает тепло
и
совершает работу
,
то при обратном ходе на том же участке
система отдает тепло
и
над ней совершается работа
.
По этой причине после протекания
обратимого процесса в одном, а затем в
обратном направлении и возвращение
системы в первоначальное состояние в
окружающих телах не должно оставаться
никаких изменений. Например шарик на
пружине в вакууме колеблется бесконечно
долго.В
том случае, когда после завершения
прямого и обратного процессов система
вернулась в первоначальное состояние
и в окружающей среде остались изменения,
процесс является необратимым. Очевидно,
что все процессы в природе необратимые.
Второе начало термодинамики — физический принцип, накладывающий ограничение на направление процессов передачи тепла между телами.
Второе начало термодинамики гласит, что невозможен самопроизвольный переход тепла от тела, менее нагретого, к телу, более нагретому.
Второе начало термодинамики запрещает так называемые вечные двигатели второго рода, показывая что коэффициент полезного HYPERLINK "http://ru.wikipedia.org/wiki/%D0%9A%D0%BE%D1%8D%D1%84%D1%84%D0%B8%D1%86%D0%B8%D0%B5%D0%BD%D1%82_%D0%BF%D0%BE%D0%BB%D0%B5%D0%B7%D0%BD%D0%BE%D0%B3%D0%BE_%D0%B4%D0%B5%D0%B9%D1%81%D1%82%D0%B2%D0%B8%D1%8F"действияне может равняться единице, поскольку для кругового процесса температура холодильника не должна равняться 0.
Второе начало термодинамики является постулатом, не доказываемым в рамках термодинамики. Оно было создано на основе обобщения опытных фактов и получило многочисленные экспериментальные подтверждения.
Существуют несколько эквивалентных формулировок второго начала термодинамики:
Постулат Клаузиуса: «Невозможен процесс, единственным результатом которого являлась бы передача тепла от более холодного тела к более горячему»[1] (такой процесс называется процессом Клаузиуса).
Постулат Томсона (Кельвина): «Невозможен круговой процесс, единственным результатом которого было бы производство работы за счет охлаждения теплового резервуара» (такой процесс называется процессом Томсона).
Эквивалентность этих формулировок легко показать. В самом деле, допустим, что постулат Клаузиуса неверен, то есть существует процесс, единственным результатом которого была бы передача тепла от более холодного тела к более горячему. Тогда возьмем два тела с различной температурой (нагреватель и холодильник) и проведем несколько циклов тепловой машины, забрав тепло Q1 у нагревателя, отдав Q2холодильнику и совершив при этом работу A = Q1 − Q2. После этого воспользуемся процессом Клаузиуса и вернем тепло Q2 от холодильника нагревателю. В результате получается, что мы совершили работу только за счет отъёма теплоты от нагревателя, то есть постулат Томсона тоже неверен.
С другой стороны, предположим, что неверен постулат Томсона. Тогда можно отнять часть тепла у более холодного тела и превратить в механическую работу. Эту работу можно превратить в тепло, например, с помощью трения, нагрев более горячее тело. Значит, из неверности постулата Томсона следует неверность постулата Клаузиуса.
Таким образом, постулаты Клаузиуса и Томсона эквивалентны.
Другая формулировка второго начала термодинамики основывается на понятии энтропии:
«Энтропия изолированной системы не может уменьшаться» (закон HYPERLINK "http://ru.wikipedia.org/wiki/%D0%97%D0%B0%D0%BA%D0%BE%D0%BD_%D0%BD%D0%B5%D1%83%D0%B1%D1%8B%D0%B2%D0%B0%D0%BD%D0%B8%D1%8F_%D1%8D%D0%BD%D1%82%D1%80%D0%BE%D0%BF%D0%B8%D0%B8"неубыванияHYPERLINK "http://ru.wikipedia.org/wiki/%D0%97%D0%B0%D0%BA%D0%BE%D0%BD_%D0%BD%D0%B5%D1%83%D0%B1%D1%8B%D0%B2%D0%B0%D0%BD%D0%B8%D1%8F_%D1%8D%D0%BD%D1%82%D1%80%D0%BE%D0%BF%D0%B8%D0%B8" энтропии)