
- •Кинематика материальной точки. Инерциальные системы отсчёта.
- •Первый и второй законы Ньютона. Сила, масса, импульс.
- •Третий закон Ньютона. Закон сохранения импульса. Центр масс.
- •Работа переменной силы. Потенциальное поле сил.
- •Кинетическая и потенциальная энергия. Законы сохранения энергии.
- •Кинематика вращательного движения. Момент сил. Условия равновесия твердого тела.
- •Основное уравнение динамики вращательного движения. Момент инерции
- •Работа внешних сил при вращательном движении. Кинетическая энергия при вращательном движении.
- •Момент импульса твердого тела. Закон сохранения момента импульса.
- •Гармонические колебания. Скорость, ускорение. Сила в колебательном движении.
- •Энергия гармонического колебания.
- •Вынужденные колебания. Резонанс.
- •Волны. Продольные и поперечные. Уравнение волны.
- •Термодинамический и молекулярно-кинетический методы изучения макроскопических тел. Изопроцессы.
- •Уравнение состояния идеального газа. Универсальная газовая постоянная.
- •Основное уравнение молекулярно-кинетической теории газов для давления и энергии. Выводы из уравнения.
- •Закон распределения молекул по скоростям Максвелла и Больцмана.
- •Число столкновений и средняя длина свободного пробега молекул.
- •Явления переноса в газах. Диффузия.
- •Внутренне трение. Теплопроводность.
- •Внутренняя энергия системы. Степени свободы. Теплоемкость.
- •25. Первое начало термодинамики ми его применение к изопроцессам.
- •Адиабатический процесс и его уравнение.
- •Работа газа при изопроцессах.
- •Обратимые и необратимые процессы. Второе начало термодинамики.
- •Энтропия.
- •Второе начало термодинамики, его статистический смысл.
- •Реальные газы. Уравнение Ван-дер-Ваальса.
- •Изотермы Ван-дер-Ваальса. Внутренняя энергия реального газа.
- •Эффект Джоуля-Томпсона.
- •Электростатическое поле. Закон Кулона.
- •Поток вектора напряженности (смещение). Теорема Остроградского-Гаусса.
- •Электроемкость конденсатора.
- •Диэлектрики в электрическом поле.
- •Поляризация диэлектриков. Электрическое смещение. Диэлектрическая проницаемость среды.
- •Сегнетоэлектрики. Пьезоэффект.
- •Недостатки классической теории электропроводности металлов.
- •Зависимость сопротивления от температуры. Сверхпроводимость.
- •Законы Кирхгофа.
Явления переноса в газах. Диффузия.
молекулы движутся хаотически, сталкиваются друг с другом, траектория движения у них ломанная.
Распространение молекул примеси в газе от источника называется диффузией.
В состоянии равновесия температура Т и концентрация n во всех точках системы одинакова. При отклонении плотности от равновесного значения в некоторой части системы возникает движение компонент вещества в направлениях, приводящих к выравниванию концентрации по всему объему системы. Связанный с этим движением перенос вещества обусловлен диффузией. Диффузионный поток будет пропорционален градиенту концентрации:
|
|
|
|
Если какое-либо тело движется в газе, то оно сталкивается с молекулами газа и сообщает им импульс. С другой стороны, тело тоже будет испытывать соударения со стороны молекул, и получать собственный импульс, но направленный в противоположную сторону. Газ ускоряется, тело тормозится, то есть на тело действуют силы трения. Такая же сила трения будет действовать и между двумя соседними слоями газа, движущимися с разными скоростями. Это явление носит название внутреннее трение или вязкость газа, причём сила трения пропорциональна градиенту скорости:
.
(3.1.1)
Если в соседних слоях газа создана и поддерживается разность температур, то между ними будет происходить обмен тепла. Благодаря хаотическому движению, молекулы в соседних слоях будут перемешиваться и их средние энергии будут выравниваться. Происходит перенос энергии от более нагретых слоев к более холодным телам. Этот процесс называется теплопроводностью. Поток тепла пропорционален градиенту температуры:
|
.
|
|
(3.1.2) |
В состоянии равновесия в среде, содержащей заряженные частицы, потенциал электрического поля в каждой точке соответствует минимуму энергии системы. При наложении внешнего электрического поля возникает неравновесное движение электрических зарядов в таком направлении, чтобы минимизировать энергию системы в новых условиях. Связанный с этим движением перенос электрического заряда называется электропроводностью, а само направленное движение зарядов - электрическим током.
В процессе диффузии при теплопроводности и электропроводности происходит перенос вещества, а при внутреннем трении – перенос энергии. В основе этих явлений лежит один и тот же механизм – хаотическое движение молекул. Общность механизма, обуславливающего все эти явления переноса, приводит к тому, что их закономерности должны быть похожи друг на друга.
Внутренне трение. Теплопроводность.
Свойство
твёрдых тел необратимо превращать в
теплоту механич. энергию, сообщённую
телу в процессах его деформирования,
сопровождающихся нарушением в нём
термодинамич. равновесия.
Если два соприкасающихся слоя движутся
с различными скоростями, то может
происходить выравнивание скоростей
слоев газов. В среднем импульсы молекул
таких слоев различны - молекулы более
быстрых слоев имеют большие значения
импульсов. Переход молекул из быстрых
слоев в более медленный сопровождается
переносом импульса упорядоченного
движения. Противоположное по характеру
действие оказывают молекулы медленного
слоя, перешедшие в быстрый слой, - в этом
слое возникают тормозящие силы. Суммарный
эффект при этом - выравнивание скоростей
слоев. Это явление называется внутренним
трением. При этом закон, установленный
Ньютоном, гласит: сила вязкости F
пропорциональна градиенту скорости
и
площади S трущихся слоев:
|
|
η
- коэффициент внутреннего трения
(динамическая вязкость). С точки зрения
молекулярно-кинетической теории
Теория теплопередачи, или теплообмена, представляет собой учение о процессах распространения теплоты в пространстве с неоднородным полем температур.
Существуют три основных вида теплообмена: теплопроводность, конвекция и тепловое излучение.
Теплопроводность — это молекулярный перенос теплоты между непосредственно соприкасающимися телами или частицами одного тела с различной температурой, при котором происходит обмен энергией движения структурных частиц (молекул, атомов, свободных электронов).
Теория теплопередачи, или теплообмена, представляет собой учение о процессах распространения теплоты в пространстве с неоднородным полем температур.
Существуют три основных вида теплообмена: теплопроводность, конвекция и тепловое излучение.
Теплопроводность — это молекулярный перенос теплоты между непосредственно соприкасающимися телами или частицами одного тела с различной температурой, при котором происходит обмен энергией движения структурных частиц (молекул, атомов, свободных электронов).