Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
ответы к зачету.docx
Скачиваний:
4
Добавлен:
29.07.2019
Размер:
594.41 Кб
Скачать

22) Nmt (Nordic Mobile Telephone) — аналоговый стандарт мобильной связи в диапазоне частот от 453 до 468 мГц.

Значительно большая по сравнению с другими стандартами площадь обслуживания одной базовой станции и соответственно меньшие затраты, а также малое затухание сигнала на открытом пространстве, что оптимально для обширных территорий с низкой плотностью населения.

Большая дальность — возможность пользоваться связью на расстоянии в несколько десятков километров от базовой станции (теоретически до 100 км, особенно летом) и даже за пределами гарантированной зоны покрытия, если абонент может подключить высокоэффективные направленные антенны и усилители.

Слабая помехоустойчивость — в этом частотном диапазоне уровень индустриальных помех выше, чем в диапазонах 800, 900 и 1800 МГц. В больших городах это выражается в навязчивом шипении и треске в динамиках.

Меньшая, чем в цифровых стандартах, возможность предоставления широкого спектра сервисных услуг.

Незащищённость от подслушивания. Абоненту NMT-450 полезно знать, что его переговоры легко принимает УКВ-приемник соответствующего диапазона. Поэтому ни о какой конфиденциальности говорить не приходится.

Габариты, вес, потребление энергии аккумуляторов у телефонных аппаратов больше, чем в цифровых системах, а время работы соответственно меньше. В новых моделях эти недостатки менее выражены.

Вероятность снижения качества связи внутри помещений выше.

Невысокая абонентская емкость сетей, обусловленная диапазоном используемых частот и особенностями технических решений, может увеличивать время дозвона в моменты пиковой нагрузки. По этой причине в крупных городах число одновременно используемых номеров в пределах одной соты стандарта NMT-450 ограничено.

NMT-450 меньше всего соответствует требованиям «городского» стандарта и больше всего подходит для малонаселённых районов.

GSM относится к сетям второго поколения (2 Generation) (1G — аналоговая сотовая связь, 2G — цифровая сотовая связь, 3G — широкополосная цифровая сотовая связь, коммутируемая многоцелевыми компьютерными сетями, в том числе Интернет).

Сотовые телефоны выпускаются для 4 диапазонов частот: 850 МГц, 900 МГц, 1800 МГц, 1900 МГц.

В зависимости от количества диапазонов, телефоны подразделяются на классы и вариацию частот в зависимости от региона использования.

Однодиапазонные — телефон может работать на одной из частот. В настоящее время не выпускаются, но существует возможность ручного выбора определённой частоты в некоторых моделях телефонов, например Motorola C115, или с помощью инженерного меню телефона.

Двухдиапазонные (Dual Band) — для Европы, Азии, Африки, Австралии 900/1800 и 850/1900 для Америки и Канады.

Трёхдиапазонные (Tri Band) — для Европы, Азии, Африки, Австралии 900/1800/1900 и 850/1800/1900 для Америки и Канады.

Четырехдиапазонные (Quad Band) — поддерживают все диапазоны 850/900/1800/1900.

В стандарте GSM применяется GMSK модуляция с величиной нормированной полосы ВТ — 0,3, где В — ширина полосы фильтра по уровню минус 3 дБ, Т — длительность одного бита цифрового сообщения.

GSM на сегодняшний день является наиболее распространённым стандартом связи. По данным ассоциации GSM (GSMA) на данный стандарт приходится 82% мирового рынка мобильной связи, 29% населения земного шара использует глобальные технологии GSM. В GSMA в настоящее время входят операторы более чем 210 стран и территорий.

23)WiMAX (англ. Worldwide Interoperability for Microwave Access) — телекоммуникационная технология, разработанная с целью предоставления универсальной беспроводной связи на больших расстояниях для широкого спектра устройств (от рабочих станций и портативных компьютеров до мобильных телефонов). Основана на стандарте IEEE 802.16, который также называют Wireless MAN (WiMAX следует считать жаргонным названием, так как это не технология, а название форума, на котором Wireless MAN и был согласован). WiMAX подходит для решения следующих задач:

Соединения точек доступа Wi-Fi друг с другом и другими сегментами Интернета.

Обеспечения беспроводного широкополосного доступа как альтернативы выделенным линиям и DSL.

Предоставления высокоскоростных сервисов передачи данных и телекоммуникационных услуг.

Создания точек доступа, не привязанных к географическому положению.

Создания систем удалённого мониторинга (monitoring системы), как это имеет место в системе SCADA.

WiMAX позволяет осуществлять доступ в Интернет на высоких скоростях, с гораздо большим покрытием, чем у Wi-Fi-сетей. Это позволяет использовать технологию в качестве «магистральных каналов», продолжением которых выступают традиционные DSL- и выделенные линии, а также локальные сети. В результате подобный подход позволяет создавать масштабируемые высокоскоростные сети в рамках городов.

24) Wi-Fi — торговая марка Wi-Fi Alliance для беспроводных сетей на базе стандарта IEEE 802.11. Термин возник как игра слов с Hi-Fi и никак не расшифровывается.

Wi-Fi был создан в 1991 году NCR Corporation/AT&T (впоследствии — Lucent Technologies и Agere Systems) в Ньивегейн, Нидерланды. Продукты, предназначавшиеся изначально для систем кассового обслуживания, были выведены на рынок под маркой WaveLAN и обеспечивали скорость передачи данных от 1 до 2 Мбит/с. Создатель Wi-Fi — Вик Хейз (Vic Hayes) находился в команде, участвовавшей в разработке таких стандартов, как IEEE 802.11b, IEEE 802.11a и IEEE 802.11g. В 2003 году Вик ушёл из Agere Systems. Agere Systems не смогла конкурировать на равных в тяжёлых рыночных условиях, несмотря на то, что её продукция занимала нишу дешёвых Wi-Fi решений. 802.11abg all-in-one чипсет от Agere (кодовое имя: WARP) плохо продавался, и Agere Systems решила уйти с рынка Wi-Fi в конце 2004 года.

Стандарт IEEE 802.11n был утверждён 11 сентября 2009 года. Его применение позволяет повысить скорость передачи данных практически вчетверо по сравнению с устройствами стандартов 802.11g (максимальная скорость которых равна 54 Мбит/с), при условии использования в режиме 802.11n с другими устройствами 802.11n. Теоретически 802.11n способен обеспечить скорость передачи данных до 600 Мбит/с[1].

Как сообщает Cult of Mac, 29 июля 2011 года IEEE, Институт инженеров по электротехнике и электронике — IEEE выпустил официальную версию стандарта IEEE 802.22. Это есть Super Wi-Fi. Системы и устройства, поддерживающие этот стандарт, позволят передавать данные на скорости до 22 Мб/с в радиусе 100 км от ближайшего передатчика.

Обычно схема Wi-Fi сети содержит не менее одной точки доступа и не менее одного клиента. Также возможно подключение двух клиентов в режиме точка-точка (Ad-hoc), когда точка доступа не используется, а клиенты соединяются посредством сетевых адаптеров «напрямую». Точка доступа передаёт свой идентификатор сети (SSID) с помощью специальных сигнальных пакетов на скорости 0,1 Мбит/с каждые 100 мс. Поэтому 0,1 Мбит/с — наименьшая скорость передачи данных для Wi-Fi. Зная SSID сети, клиент может выяснить, возможно ли подключение к данной точке доступа. При попадании в зону действия двух точек доступа с идентичными SSID приёмник может выбирать между ними на основании данных об уровне сигнала. Стандарт Wi-Fi даёт клиенту полную свободу при выборе критериев для соединения. Более подробно принцип работы описан в официальном тексте стандарта.

Однако, стандарт не описывает все аспекты построения беспроводных локальных сетей Wi-Fi. Поэтому каждый производитель оборудования решает эту задачу по-своему, применяя те подходы, которые он считает наилучшими с той или иной точки зрения. Поэтому возникает необходимость классификации способов построения беспроводных локальных сетей.

По способу объединения точек доступа в единую систему можно выделить:

Автономные точки доступа (называются также самостоятельные, децентрализованные, умные)

Точки доступа, работающие под управлением контроллера (называются также «легковесные», централизованные)

Бесконтроллерные, но не автономные (управляемые без контроллера)

По способу организации и управления радиоканалами можно выделить беспроводные локальные сети:

Со статическими настройками радиоканалов

С динамическими (адаптивными) настройками радиоканалов

Со «слоистой» или многослойной структурой радиоканалов

Преимущества Wi-Fi

Позволяет развернуть сеть без прокладки кабеля, что может уменьшить стоимость развёртывания и/или расширения сети. Места, где нельзя проложить кабель, например, вне помещений и в зданиях, имеющих историческую ценность, могут обслуживаться беспроводными сетями.

Позволяет иметь доступ к сети мобильным устройствам.

Wi-Fi устройства широко распространены на рынке. Гарантируется совместимость оборудования благодаря обязательной сертификации оборудования с логотипом Wi-Fi.

Излучение от Wi-Fi устройств в момент передачи данных на два порядка (в 100 раз) меньше, чем у сотового телефона.

Недостатки Wi-Fi

В диапазоне 2.4 GHz работает множество устройств, таких как устройства, поддерживающие Bluetooth, и др, и даже микроволновые печи, что ухудшает электромагнитную совместимость.

Частотный диапазон и эксплуатационные ограничения в различных странах неодинаковы. Во многих европейских странах разрешены два дополнительных канала, которые запрещены в США; В Японии есть ещё один канал в верхней части диапазона, а другие страны, например Испания, запрещают использование низкочастотных каналов. Более того, некоторые страны, например Россия, Беларусь и Италия, требуют регистрации всех сетей Wi-Fi, работающих вне помещений, или требуют регистрации Wi-Fi-оператора[5].

Как было упомянуто выше — в России точки беспроводного доступа, а также адаптеры Wi-Fi с ЭИИМ, превышающей 100 мВт (20 дБм), подлежат обязательной регистрации.[6]

Стандарт шифрования WEP может быть относительно легко взломан[7] даже при правильной конфигурации (из-за слабой стойкости алгоритма). Несмотря на то, что новые устройства поддерживают более совершенный протокол шифрования данных WPA и WPA2, многие старые точки доступа не поддерживают его и требуют замены. Принятие стандарта IEEE 802.11i (WPA2) в июне 2004 года сделало доступной более безопасную схему, которая доступна в новом оборудовании. Обе схемы требуют более стойкий пароль, чем те, которые обычно назначаются пользователями. Многие организации используют дополнительное шифрование (например VPN) для защиты от вторжения. На данный момент основным методом взлома WPA2 является подбор пароля, поэтому рекомендуется использовать сложные цифро-буквенные пароли для того, чтобы максимально усложнить задачу подбора пароля.

В режиме ad-hoc стандарт предписывает лишь реализовать скорость 11 Мбит/сек (802.11b). Шифрование WPA(2) недоступно, только взломанный WEP.

25)

26) Основными первичными сигналами электросвязи являются: телефонный, звукового вещания, факсимильный, телевизионный, телеграфный, передачи данных.

Телефонный (речевой) сигнал. Звуки речи образуются в результате прохождения воздушного потока из легких через голосовые связки и полости рта и носа.

Основными параметрами телефонного сигнала являются:

мощность телефонного сигнала PТЛФ;

коэффициент активности телефонного сообщения, т.е. отношение времени, в течение которого мощность сигнала на выходе канала превышает заданное пороговое значение, к общему времени занятия канала для разговора;

динамический диапазон определяется выраженным в децибелах отношением максимальной и минимальной мощности сигнала (дБ). Динамический диапазон телефонного сигнала составляет D=35...40 дБ; (Динами́ческий диапазо́н — характеристика устройства или системы, предназначенной для преобразования, передачи или хранения звукового давления , представляющая логарифм отношения максимального и минимального возможных значений давлений входного параметра устройства (системы).)

пик-фактор сигнала, который составляет 14 дБ. При этом максимальная мощность, вероятность превышения которой исчезающе мала, равна 2220 мкВт (+3,5 дБм0);

энергетический спектр речевого сигнала - область частот, в которой сосредоточена основная энергия сигнала (Рис. 3.4) , где - спектральная плотность среднего квадрата звукового давления; - порог слышимости (минимальное звуковое давление, которое начинает ощущаться человеком с нормальным слухом на частотах 600..800 Гц); Df = 1 Гц. Из Рис.3.4 следует, что речь представляет собой широкополосный процесс, частотный спектр которого простирается от 50..100 Гц до 8000..10000 Гц. Установлено, однако, что качество речи получается вполне удовлетворительным при ограничении спектра частотами 300..3400 Гц. Эти частоты приняты МСЭ-Т в качестве границ эффективного спектра речи. При указанной полосе частот слоговая разборчивость составляет около 90%, разборчивость фраз - более 99% и сохраняется удовлетворительная натуральность звучания.

27)

28) Телефонный (речевой) сигнал. Звуки речи образуются в результате прохождения воздушного потока из легких через голосовые связки и полости рта и носа. В процессе прохождения воздушного потока из легких через голосовые связки и полости рта и носа образуются звуки речи, причем мощность гармоник частоты основного тона меняется. Области повышенной мощности гармоник частоты основного тона называются формантами. Различные звуки речи содержат от двух до четырех формант. Высокое качество передачи телефонного сигнала характеризуется уровнем громкости, разборчивостью, естественным звучанием голоса, низким уровнем помех. Эти факторы определяют требования к телефонным каналам.

Частота импульсов основного сигнала:

(бас);

(тенор).

= = , где

-время работы;

-активная мощность.

=10log =20log , где -мощность.

Очень часто используют для оценки, понятие коэффициента активности.

=0,25-0,35- это отношение времени, в течении которого мощность сигнала на входе превышает заданное пороговое значение к объёму времени занятия канала.

=10log , где (f)- спектральная плотность звукового давления;

-порог.

Софаметрический фильтр, который учитывает особенности приёмника:

, где

-полоса частот;

- допустимая мощность шумов;

.

Сигнал звукового вещания:

29) Передача рисунков, чертежей и т.д. Он получается в результате элетро-оптического анализа отражённого светового потока и преобразования его в электрический сигнал. В приёмнике электрический сигнал возбуждает какое либо физическое воздействие окрашивающая элементарную площадку носителя записи.

Частотный спектр факсимильного сигнала определяется характером изображения, скорости развёртки, размерами анализируемого пятна. Все эти факторы могут дать максимальную частоту рисунка.

-частота рисунка;

= ;

D-диаметр барабана 70 мм;

N-частота вращения барабана;

d(мм)-ширина анализируемого пятна;

-динамический диапазон факсимильного сигнала;

=25 дб;

Q=20lg =4,5 дб;

-информационная ценность;

-количество информации.

Факсимильный сигнал формируется методом построчный развертки. Частотный спектр первичного факсимильного сигнала определяется характером передаваемого изображения, скоростью развертки и размерами сканирующего пятна. Для параметров факсимильных аппаратов, верхняя частота сигнала может составлять 732, 1100 и 1465 Гц. Динамический диапазон сигнала составляет около 25 дБ, пик-фактор равен 4,5 дБ при 16 градациях яркости.

30) По стандарту берётся изображение, которое подлежит передачи и разбивается на строки (количество 625 штук), одно такое изображение формирует кадр, их передаётся 25 в секунду.

Чтобы избежать мерцания вводится метод через строчной развёртки, в этом случае 625 строк передаются в виде полукадра, каждый передаётся за 1\50 секунды.

Количество строк в секунду N: N=n*2=15625.

-время передачи 1 строки.

Гасящие и синхронизирующие – импульсы:

1) для через строчной развёртки;

2) для организации всего кадра.

Спектр телевизионного сигнала зависит от характера передаваемого изображения, но структура спектра в основном определяется развёрткой.

С ростом частоты энергии телевизионного сигнала уменьшается. Установлена что мощность телевизионного сигнала: 0-1,5 МГц, основная мощность – от 200 до 300 кГц. Перепад в спектре – 38-40 дб.

Наивысшая частота эффективной части спектра телевизионного сигнала составляет 6 МГц ( .

В системах цветного телевидения изображения разбивается с помощью светофильтров на 3 одновременных сигнала: красный (R), зелёный (G), синий (B).

Каждый попадает на передающую трубку и они образуют сигналы цветности: . В приёмнике путём их сложения передают цветное изображение. Цветное телевидение совместимо с чёрно белым. Ширина спектра должна быть такой же как и у чёрного белого.

=0,3 +0,59 +0,4 .

-полоса телевизионного сигнала;

=0-6МГц.

Для передачи цветов создаются два цветоразностных сигнала: для передачи каждого надо =1,5 МГц.

Действие помех. Помехи вызывают пятна, различной ширины. Для их уменьшения создаётся смешивающий фильтр. Отношение сигнал-шум определяют как отношение размаха сигнала изображения к напряжению помехи на выходе взвешивающего фильтра.

Защищенность сигнала от помехи должна быть не хуже 57 дб при 100 градациях яркости.

Телевизионный сигнал также формируется методом развертки. Анализ показывает, что энергетический спектр телевизионного сигнала сосредоточен в полосе частот 0..6 МГц. Динамический диапазон DС » 40 дБ, пик-фактор 4,8 дБ.

31) Сигналы бывают:

1)двухполярные;

2)однополярные.

Для импульсов определяется скорость передачи (1мин\с-1 бот). Тактовая частота определяется .

P (+t)-вероятность появления положительного импульса.

;

w=2f;

-длительность импульса;

Определим минимальную полосу частот , необходимую для передачи телеграфного сигнала. Судя по графику и выражению нужен бесконечный текст полосы, однако при передачи двойных сигналов на практике нет необходимости восстанавливать сигнал без искажений, т.е. сохранять форму. Достаточно зафиксировать только знак импульса при двухполярной передаче или факт наличия или отсутствия при однополярной передаче. Определим : пусть на вход ИФНЧ (идеальный фильтр низких частот).

АЧХ, ИФНЧ.

wc=2fc- частотная среда фильтра.

На вход последовательных сигналов:

С(t)= ;

G(t)=

c(t) n(t)

ИНФЧ

n (t)= ;

si z= .

На выходе ИФНЧ:

.

0,5 - контрольное значение; здесь можно говорить о полосе частот ИФНЧ; о полосе спектра сигнала передаваемых данных при такой можно уверенно зафиксировать импульсы на уровне 0,5; таким образом вывод: если частотная характеристика канала приближается к характеристике ИФНЧ, то эффективная полоса частот двойного сигнала ; если есть помехи и искажения, то в реальных каналах полосу частот расширяют до .

Таблица первичного сигнала.

Вид сигнала

Тип спектра

Динамический диапазон, дб

Количество информации, I бит\с

ТЛГ

0-100

-

35

ПД

300-3400

-

100000

ТЛФ

300-3400

40

8000

ЗВ

50-10000

65

18000

Факс

0-1465

25

11700

Газеты

0-180000

25

360000

TV

30-6*

40

80*