Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
ответы к зачету.docx
Скачиваний:
7
Добавлен:
29.07.2019
Размер:
594.41 Кб
Скачать

3),4)Открытие электромагнитных волн легли в основу изобретения электрического телеграфа как основы дальней связи.

В 1753 г. физик из Лейпцига Винклер открыл способ передачи электрического тока по проводам , что позволило женевцу Лесажу сконструировать громоздкий телеграфный аппарат, состоящий из 24 изолированных проводов, подключенных на другом конце к источнику электрического тока. Индикаторами букв этого аппарата были поочередно притягиваемые соответствующие шарики бузины.

В электромагнитном телеграфе П. Л. Шиллинга основным элементом был мультипликатор, содержащий астатическую пару намагниченных стрелок, которые были изобретены в 1821 г. A. M. Ампером. Изменение полярности подключения к батарее проводов линии связи вызывало поворот диска, подвешенного на одной нити с астатическими стрелками мультипликатора. Одна сторона диска была окрашена в белый, а другая – в черный цвет, благодаря этому по положению диска можно было судить о переданном знаке. Линейная часть устройства имела восемь проводов (один общий, один вызывной), подключаемых к электрической батарее с помощью специальной клавиатуры с восемью парами белых и черных клавиш. Приемник имел семь мультипликаторов, смонтированных на общей раме. Для передачи букв и цифр, а также для уменьшения числа проводов в линии связи Шиллинг разработал специальный код, содержащий комбинации разного числа (от 1 до 5) последовательных сигналов. Это был первый в истории электросвязи неравномерный код. Именно с изобретения этого аппарата начинается эпоха практического применения электрического телеграфа.

5) Датой рождения первого электрического телефона считается 14 февраля 1876 г. В этот день в американское патентное ведомство поступило две заявки на аппарат для передачи звуков на расстояние посредством электрического тока. Первая принадлежала американскому преподавателю школы глухонемых А. Г. Беллу. Вторая, поступившая на два часа позже, – американскому физику И. Грею. Обе заявки были вовсе не подобные, а принципиально различны. Белл сконструировал электромагнитный передатчик (микрофон), в котором передаваемый в линию ток изменялся вследствие изменения магнитного потока. Грей же предлагал совершенно иной метод изменения тока – вследствие изменения при колебаниях мембраны электрического сопротивления столбика проводящей жидкости. Не останавливаясь на сопоставлении достоинств и недостатков обоих устройств, отметим главное. Белл патентовал почти готовое устройство. Грей же подал лишь предварительное уведомление о намерении изобрести устройство с указанием предлагаемого принципа его действия.

6) Термин «радио» (от лат. radius, radiare, radio – испускать, облучать, излучать во все стороны) впервые ввел в обращение известный английский физик - химик В. Крукс (1832–1919). В вакуумной трубке, используя коромысловые весы в 1873 г. он измерил атомный вес открытого им же элемента талия и обнаружил нарушение балансировки высокоточного инструмента при возникновении теплового облучения. Чуть позже было подмечено аналогичное влияние светового излучения. На основе открытия был сконструирован измерительный прибор – «радиометр». Строго говоря, практическая эра радиосвязи берет свой отсчет с 1883 г., когда Эдисон открыл эффект распыления вещества нити накаливания в электрической лампе, названный затем «эффектом Эдисона». Пытаясь продлить срок службы созданной им ранее лампы с угольной нитью введением в ее вакуумный баллон металлического электрода, он обнаружил, что если приложить к электроду положительное напряжение, то в вакууме между этим электродом и нитью протекает ток. Это явление, которое было единственным фундаментальным научным открытием великого изобретателя, лежит в основе всех электронных ламп и всей электроники до транзисторного периода. Им были опубликованы материалы по так называемому эффекту Эдисона, и был получен соответствующий патент. Однако Эдисон не довел свое открытие до конечных результатов.

7) В 1868 г. Махлон Лумис (1826–1886) продемонстрировал группе американских конгрессменов и ученых работу прототипа линии беспроводной связи протяженностью примерно 22 км. Воздушные змеи поднимали провода на высоту около 190 м. На приемной стороне в провод был включен гальванометр. Когда на передающей стороне провод соединялся с землей, на приемной стороне ток в проводе резко изменялся, вызывая отклонение стрелки гальванометра. В экспериментах Лумиса впервые в радиосвязи были применены высоко поднятые над землей передающая и приемная антенны. В 1869 г. Лумис обратился к правительству США с просьбой о выделении 50000 долларов на создание трансатлантического беспроводного телеграфа. В записке, направленной Лумисом в Конгресс, он дал следующее пояснение того, как работает предлагаемая им система беспроводной связи: «Вызванные колебания или волны, распространяясь от источника возмущения вдоль поверхности Земли подобно волнам в озере, достигают удаленный пункт и вызывают колебания в другом проводнике, которые могут быть обнаружены индикатором. Индикатор отмечает длительность возникших в этом проводнике колебаний и преобразует принятый сигнал в знаки, соответствующие посланному сообщению». Это пояснение полностью соответствует современным представлениям о работе систем радиосвязи.

8) Первым, кто предложил и претворил в жизнь идею телеграфирования без проводов, был преподаватель морского инженерного училища Санкт-Петербурга Александр Степанович Попов. В качестве передатчика в первых опытах он использовал генератор, разработанный Герцем. В этом устройстве источником высокочастотных колебаний служила индукционная катушка с прерывателем (катушка Румкорфа). Прерыватель периодически замыкал и размыкал цепь тока первичной катушки трансформатора. При этом во вторичной, повышающей обмотке возникали импульсы напряжения. Каждый такой импульс пробивал искровой промежуток между двумя шариками разрядника и вызывал серию затухающих колебаний в колебательном контуре, образованном шариками и антенной. Колебательная система излучала в окружающее пространство радиоволны. Чувствительным элементом приемника служил когерер – трубка с двумя контактными пластинами, разделенными слоем металлического порошка. Под действием высокочастотных токов, наводимых в антенне, порошок спекался и замыкал цепь чувствительного реле. Далее включался телеграфный аппарат, записывающий принятый сигнал на ленту, и электрический звонок, молоточек которого встряхивал порошок когерера и нарушал его проводимость.

9) Идея передачи изображения на расстоянии существовала с глубокой древности, однако техническая и теоретическая база для создания подобного устройства появились лишь в конце XIX века, после создания радио.

В 1884 году немецкий изобретатель Пауль Нипков изобрёл диск Нипкова — устройство, лёгшее в основу механического телевидения.

В 1907 году Максом Дикманном был продемонстрирован телевизионный приёмник, с двадцатистрочным экраном размером 3х3 см и частотой развёртки 10 кадр/с.

9 мая 1911 года на заседании Русского технического общества Розинг продемонстрировал передачу телевизионных изображений простых геометрических фигур и приём их с воспроизведением на экране ЭЛТ (электронно-лучевая трубка). Передаваемое изображение было статичным.

В 1925 году шотландский изобретатель Джон Лоджи Берд впервые продемонстрировал телевизионную передачу движущихся объектов, используя диск Нипкова. В конце 1920-х основанная им компания «Baird Corporation» была единственным производителем телевизоров в мире.

Настоящий прорыв в технике электронного телевидения произвёл В. К. Зворыкин — в 1923 году он подал заявку на телевидение, основанное полностью на электронном принципе, а в 1931 году создавший первую в мире передающую электронную трубку с мозаичным фотокатодом, названную «иконоскопом», положившую начало развитию электронного телевидения. Регулярное телевизионное вещание по системе с оптико-механической развёрткой изображения началось в США в 1927 году, в Великобритании в 1928 году, в Германии в 1929 году, в Великобритании в 1936 году, в СССР 1939 году.

После разработки и создания системы NTSC, в 1953 году в США началось регулярное цветное телевизионное вещание. Тогда же появились и цветные телевизоры. Стоил он тогда в среднем около тысячи долларов.

В СССР первым серийным цветным телевизором стал «Рубин-401», выпущенным в Москве, который работал в новой для того времени французской системе SECAM.

Примерно до 1990-х годов использовались телевизоры исключительно на основе кинескопа (электронно-лучевой трубки). В конце XX века начали получать распространение проекционные телевизоры (как на основе ЭЛТ, так и ЖКИ (жидкокристаллических индикаторов), а также на основе микромеханического оптического модулятора). Появились телевизоры на основе практически плоского, а затем и совершенно плоского, кинескопов, появились тёмные кинескопы с улучшенной передачей чёрного цвета, кинескопы с укороченной трубкой (по толщине корпуса конкурирующие с жидкокристаллическими дисплеями).

11)

Совокупность технических средств для передачи сообщений от источника к потребителю называется системой связи. Обязательными компонентами любой системы связи независимо от вида передаваемых сообщений являются передающее устройство, линия связи и приемное устройство. Иногда в понятие «система связи» включаются источник и потребитель сообщений. Обобщенная структурная схема системы связи приведена на рис. 3.2. Сообщение a(t) от источника ИС сообщений поступает на передающее устройство, состоящее из первичного преобразователя ПСС1 сообщения в первичный электрический сигнал b(t), и модулятора МД, обеспечивающего вторичное преобразование этого сигнала в сигнал s(t) для наилучшей его передачи по линии связи. Линией связи ЛС называется среда, используемая для передачи сигналов от передатчика к приемнику (кабель, волновод или область пространства, в котором распространяются электромагнитные волны от передатчика к приемнику). Приемное устройство производит обратное преобразование принятого сигнала в сообщение и состоит из демодулятора ДМ и преобразователя ПСС сигнала в сообщение. Отличия параметров системы связи от желаемых характеристик приводят к искажениям передаваемого сигнала. Кроме того, в любом узле системы передачи, но главным образом на линии связи, присутствуют помехи, поэтому сигнал на входе приемника s1(t) отличается от переданного сигнала на выходе передатчика. Приемное устройство обрабатывает принятое колебание и восстанавливает по нему электрический сигнал b1(t), а следовательно, и сообщение а1(t), которое реставрируется с некоторой погрешностью.