Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
voprosy_k_zachetu_po_TOUES.docx
Скачиваний:
6
Добавлен:
22.07.2019
Размер:
167.9 Кб
Скачать
  1. Сетевое планирование в условиях неопределенности.

Продолжительность выполнения работ часто трудно задать точно и потому в практической работе вместо одного числа (детерминированная оценка) задаются две оценки — минимальная и максимальная.

Минимальная (оптимистическая) оценка tmin(i,j) характеризует продолжительность выполнения работы при наиболее благоприятных обстоятельствах, а максимальная (пессимистическая) tmin(i,j) — при наиболее неблагоприятных. Продолжительность работы в этом случае рассматривается, как случайная величина, которая в результате реализации может принять любое значение в заданном интервале. Такие оценки называются вероятностными (случайными), и их ожидаемое значение tox оценивается по формуле (при бета-распределении плотности вероятности):

tож(i,j)=(3tmin (i,j) + 2t max(i,j)): 5.

Для характеристики степени разброса возможных значений вокруг ожидаемого уровня используется показатель дисперсии S2:

S2 (i,j) = (t max (i,j) – t min (i,j) 2 :5 2 =

= 0.04 ( t max (i,j) – t min (i,j)2

На основе этих оценок можно рассчитать все характеристики СМ, однако они будут иметь иную природу, будут выступать как средние характеристики. При достаточно большом количестве работ можно утверждать (а при малом — лишь предполагать), что общая продолжительность любого, в том числе и критического, пути имеет нормальный закон распределения со средним значением, равным сумме средних значений продолжительности составляющих его работ, и дисперсией, равной сумме дисперсий этих же работ.

Кроме обычных характеристик СМ, при вероятностном задании продолжительности работ можно решить две дополнительные задачи:

1) определить вероятность того, что продолжительность критического пути tкр не превысит заданного директивного уровня Т;

2) определить максимальный срок выполнения всего комплекса работ Т при заданном уровне вероятности р.

Первая задача решается на основе интеграла вероятностей Лапласа Ф(г) использованием формулы:

P (t kp < T) = 0,5 + 0,5 Ф(z),

Где нормированное отклонение случайной величины: z = (Т - tKp)/S Kp;

SKp — среднее квадратическое отклонение, вычисляемое как корень квадратный из дисперсии продолжительности критического пути.

  1. Оптимизация сетевых моделей.

С каждой работой, имеющей определенный неизменный объем, связаны затраты на ее выполнение. Как правило, затраты на выполнение работы с неизменным ее объемом возрастают с уменьшением ее продолжительности и снижаются при увеличении ее продолжительности.

В связи с этим возможны варианты организации комплекса работ, отличающиеся продолжительностью его выполнения и затратами на его выполнение.

Для выбора наилучшего варианта служит оптимизация. Оптимальным считается тот вариант, который отвечает заданному критерию.

Оптимизация сетевого графика может осуществляться по следующим двум критериям:

- минимизация времени выполнения комплекса работ при заданных затратах на это выполнение;

- минимизация затрат на выполнение комплекса работ при заданном времени этого выполнения.

Таким образом, нельзя добиться выполнения комплекса работ одновременно в минимальные сроки и с наименьшими затратами.

Целью оптимизации по критерию является сокращение времени выполнения проекта в целом. Эта оптимизация имеет смысл только в том случае, когда длительность выполнения работ может быть уменьшена за счет дополнительных ресурсов, что влечет к повышению затрат на выполнение работ. Для оценки величины дополнительных затрат, связанных с ускорением выполнения той или иной работы, используются либо нормативы, либо данные о выполнении аналогичных работ в прошлом.

Исходными данными для проведения оптимизации являются:

· нормальная длительность работы;

· ускоренная длительность;

· затраты на выполнение работы в нормальный срок;

· затраты на выполнение работы в ускоренный срок.

Требуется оптимизировать по критерию минимизации затрат сетевой график при заданной продолжительности выполнения всего комплекса работ за 19 суток.

Оптимизировать сетевой график по критерию минимизации затрат при заданной продолжительности выполнения всего комплекса работ можно двумя способами. Первый способ заключается в уменьшении продолжительности выполнения работ, начиная с тех, которые дают наименьший прирост затрат. Второй способ заключается в увеличении продолжительности выполнения работ, начиная с тех, которые дают наибольший прирост затрат. Определяемые любым из указанных способов оптимальные затраты должны иметь одинаковую величину.