- •Эконометрика
- •Москва 2001
- •Содержание
- •От автора
- •1. Основные задачи, цели и последовательность проведения эконометрического анализа
- •1.1. Что изучает эконометрика?
- •1.2. Краткая история развития эконометрики
- •1.3. Классификация эконометрических моделей
- •1.3.1. Регрессионные модели
- •1.3.2. Системы взаимозависимых моделей
- •1.3.3. Рекурсивные системы
- •1.3.4. Модели временных рядов
- •1.4. Постановки некоторых эконометрических задач
- •1.5. Последовательность разработки эконометрических моделей
- •2. Эконометрический анализ на основе моделей линейной регрессии
- •2.1. Однофакторная линейная регрессия
- •2.2. Многофакторная линейная регрессия
- •2.3.Некоторые особенности применения многофакторных регрессионных моделей в эконометрическом анализе
- •2.3.1. Мультиколлинеарность
- •2.3.2. Использование фиктивных переменных
- •2.3.3. Проблемы гетероскедастичности
- •3. Эконометрический анализ на основе временных рядов
- •3.1.Основные понятия в теории временных рядов
- •3.2. Цели, этапы и методы анализа временных рядов
- •3.3. Модели тренда и методы его выделения из временного ряда
- •3.4. Порядок анализа временных рядов
- •3.5. Графические методы анализа временных рядов
- •3.6. Пример анализа временных рядов
- •Литература
- •Дополнительная:
- •Обзор литературы по статистическим пакетам:
- •Приложение 1 Методические указания по выполнению задания 1
- •Задание 1. Разработка и анализ эконометрической модели
- •Приложение 2 Методические указания по выполнению задания 2
- •Приложение 3 Краткое содержание программы дисциплины «Эконометрика»
- •Содержание
- •2. Эконометрический анализ на основе моделей линейной регрессии
- •4. Эконометрический анализ на основе временных рядов
- •Приложение 4
- •Значения t-критерия Стьюдента (двухсторонний критерий)
- •А.С. Минзов Эконометрика
- •Компьютерная верстка и.А. Полухина
- •113447, Г. Москва, ул. Большая Черемушкинская, д. 17а
2.3.Некоторые особенности применения многофакторных регрессионных моделей в эконометрическом анализе
2.3.1. Мультиколлинеарность
В предыдущих разделах были рассмотрены основные вопросы применения регрессионных моделей в эконометрическом анализе.
На практике исследователю нередко приходится сталкиваться с ситуацией, когда полученная им регрессия является «плохой», т.е. t-статистики большинства оценок малы, что свидетельствует о незначимости соответствующих независимых переменных. В то же время F-статистика может быть достаточно большой, что говорит о значимости регрессии в целом. Одна из возможных причин такого явления носит название мультиколлинеарности и возникает при наличии высокой корреляции между факторами.
Одним из условий классической регрессионной модели является предположение о линейной независимости объясняющих переменных. При нарушении этого условия, т.е. когда одна из переменных является линейной комбинацией их других, это называется полной коллинеарностью. В этой ситуации нельзя использовать метод наименьших квадратов (МНК). На практике полная коллинеарность встречается исключительно редко. Гораздо чаще приходится сталкиваться с ситуацией, когда между факторами имеется высокая степень корреляции. Тогда говорят о наличии мультиколлинеарности. В этом случае МНК-оценка (оценка методом наименьших квадратов) формально существует, но обладает «плохими» свойствами.
Мультиколлинеарность может возникать в силу разных причин. Например, несколько независимых переменных могут иметь общий временной тренд, относительно которого они совершают малые колебания. В частности, так может случиться, когда значения одной независимой переменной являются датированными значениями другой.
Выделим некоторые наиболее характерные признаки мультиколлинеарности.
1. Небольшое изменение исходных данных (например, добавление новых наблюдений) приводит к существенному изменению оценок коэффициентов модели.
2. Оценки имеют большие стандартные ошибки, малую значимость, в то время как модель в целом является значимой (высокое значение коэффициента детерминации R2 и соответствующей F-статистики).
3. Оценки коэффициентов имеют неправильные с точки зрения теории знаки или неоправданно большие значения.
Что же делать, если по всем признакам имеется мультиколлинеарность? Однозначного ответа на этот вопрос нет, и среди эконометристов есть разные мнения на этот счет. При столкновении с проблемой мультиколлинеарности может возникнуть естественное желание отбросить «лишние» независимые переменные, которые, возможно, служат ее причиной. Однако следует помнить, что при этом могут возникнуть новые трудности. Во-первых, далеко не всегда ясно, какие переменные являются лишними в указанном смысле. Мультиколлинеарность означает лишь приблизительную линейную зависимость между факторами,но это не всегда выделяет «лишние» переменные. Во-вторых, во многих ситуациях удаление каких-либо независимых переменных может значительно отразиться на содержательном смысле модели. Наконец, отбрасывание так называемых существенных переменных, т.е. независимых переменных, которые реально влияют на изучаемую зависимую переменную, приводит к смещению коэффициентов модели. На практике, обычно при обнаружении мультиколлинеарности убирают наименее значимый для анализа фактор, а затем повторяют расчеты.
