- •Предмет молекулярной физики и термодинамики. Статистическая физика и термодинамика. Основные положения мкТгазов. Термодинамический и статистический методы. Три начала термодинамики.
- •Термодинамическая система. Микро- и макрохарактеристики системы. Макроскопическое состояние. Макроскопические параметры как средние значения. Температура.
- •Тепловое равновесие. Равновесные состояния и процессы. Модель идеального газа. Уравнение состояния идеального газа (уравнения Клапейрона и Клапейрона – Менделеева). Изопроцессы.
- •Основное уравнение мкт идеального газа для давления. Следствия из основного уравнения. Молекулярно – кинетическое толкование абсолютной температуры.
- •Барометрическая формула. Распределение молекул в поле силы тяжести. Распределение Больцмана.
- •Среднее число столкновений и средняя длина свободного пробега газовых молекул и их зависимость от температуры.
- •Внутренняя энергия системы. Теплообмен. Работа и количество теплоты. Первое начало термодинамики. Работа, совершаемая термодинамической системой при изменениях объема.
- •Степени свободы молекул газа. Закон равномерного распределения энергии теплового движения молекул газа по степеням свободы (теорема Больцмана). Внутренняя энергия идеального газа.
- •Теплоемкость. Зависимость теплоемкости идеального газа от степени свободы молекул и от вида процесса теплопередачи (изохорного, изобарного, изотермического, адиабатного). Уравнение Майера.
- •Затруднения и недостатки классической теории теплоемкости идеальных газов. Закон Дюлонга – Пти.
- •Реальные газы. Критическое состояние вещества. Фазовые равновесия и фазовые превращения. Понятие фазы и фазового равновесия.
- •Конденсированное состояние вещества. Жидкости. Твердое состояние вещества. Диффузия в жидкостях и в твердых телах.
- •Агрегатные состояния вещества и их общая характеристика с точки зрения молекулярного строения. Испарение, конденсация, сублимация, плавление, кристаллизация.
- •Вязкость. Вязкая жидкость. Стационарное течение вязкой жидкости. Коэффициент вязкости жидкостей. Нормальная и аномальная вязкости.
- •Области применения
- •Капиллярные явления. Смачивание и несмачивание. Давление под изогнутой поверхностью жидкости. Формула Лапласа для сил дополнительного давления.
- •Давление под изогнутой поверхностью жидкости
Реальные газы. Критическое состояние вещества. Фазовые равновесия и фазовые превращения. Понятие фазы и фазового равновесия.
Реальный газ — газ, который не описывается уравнением состояния идеального газа Клапейрона — Менделеева.
Зависимости между его параметрами показывают, что молекулы в реальном газе взаимодействуют между собой и занимают определенный объём. Состояние реального газа часто на практике описывается обобщённым уравнением Менделеева — Клапейрона:
где p — давление; V - объем T — температура; Zr = Zr (p,T) — коэффициент сжимаемости газа; m - масса; М — молярная масса; R — газовая постоянная.
Критическое состояние вещества -
1) предельное состояние равновесия двухфазных систем, в котором обе сосуществующие фазы становятся тождественными по своим свойствам;
2) состояние вещества в точках фазовых переходов II рода. К. с., являющееся предельным случаем равновесия двухфазных систем, наблюдается в чистых веществах при равновесии жидкость — газ, а в растворах — при фазовых равновесиях газ — газ, жидкость — жидкость, жидкость — газ, твёрдое тело — твёрдое тело.
Фазовое равновесие, одновременное существование термодинамически равновесных фаз в многофазной системе. Простейшие примеры – равновесие жидкости со своим насыщенным паром, равновесие воды и льда при температуре плавления, расслоение смеси воды с триэтиламином на два несмешивающихся слоя (две фазы), отличающихся концентрациями.
Каждое вещество в зависимости от внешних условий - температуры и давления - может находиться в твердом, жидком и газообразном состоянии. При подводе или отводе теплоты меняется форма связи между молекулами, вызывая тем самым изменение вещества, т. е. происходит фазовое превращение. Для получения холода используют фазовые превращения, протекающие при низких температурах с поглощением теплоты из охлаждаемой среды. К ним относятся плавление, кипение и сублимация.
Плавление. Процесс перехода вещества из кристаллического состояния в жидкое с поглощением теплоты называют плавлением (например, при нагревании водного льда его температура повышается до температуры 0 оС, дальнейшее нагревание ведет к его плавлению).
Испарение. Процесс парообразования, происходящий со свободной поверхности жидкости при различных температурах, называют испарением.
Кипение. Процесс интенсивного парообразования, происходящий по всему объему жидкости в результате поглощения теплоты окружающей среды, называют кипением.
Сублимация. Процесс перехода тела из твердого состояния в парообразное, минуя промежуточное жидкое состояние, называют сублимацией.
Конденсация. Процесс превращения насыщенного пара в жидкость, сопровождающийся отводом выделяемой теплоты, называют конденсацией.
Термодинами́ческая фа́за — термодинамически однородная по составу и свойствам часть термодинамической системы, отделенная от других фаз поверхностями раздела, на которых скачком изменяются некоторые свойства системы. Другое определение: Фаза — гомогенная часть гетерогенной системы.
Конденсированное состояние вещества. Жидкости. Твердое состояние вещества. Диффузия в жидкостях и в твердых телах.
Конденсированное состояние вещества - жидкое и твердое агрегатные состояния вещества. Переход вещества из газообразного в конденсированное состояние называется конденсацией.
Жидкость. Состояние вещества, при котором оно обладает малой сжимаемостью, то есть хорошо сохраняет объём, однако не способно сохранять форму. Жидкость легко принимает форму сосуда, в который она помещена. Атомы или молекулы жидкости совершают колебания вблизи состояния равновесия, запертые другими атомами, и часто перескакивают на другие свободные места. Присутствует только ближний порядок.
Твердое состояние вещества. Состояние, характеризующееся способностью сохранять объём и форму. Атомы твёрдого тела совершают лишь небольшие колебания вокруг состояния равновесия. Присутствует как дальний, так и ближний порядок.
Д. имеет место в газах, жидкостях и твёрдых телах, причём диффундировать могут как находящиеся в них частицы посторонних веществ, так и собственные частицы.Д. крупных частиц, взвешенных в газе или жидкости осуществляется благодаря их броуновскому движению. Наиболее быстро Д. происходит в газах, медленнее в жидкостях, ещё медленнее в твёрдых телах, что обусловлено характером теплового движения частиц в этих средах.
