
- •Редакционная коллегия книги:
- •Рецензенты книги:
- •Глобального Экологического Фонда
- •Предисловие
- •Раздел I. Биологическое разнообразие и методы его оценки
- •Введение
- •Глава 1. Биологическое разнообразие
- •1.1. Понятие биоразнообразия
- •1.2. Международная программа «Биологическое разнообразие»
- •1.3. Исследовательская программа «Диверситас»
- •1.4. Реализация Конвенции о биоразнообразии в России
- •Глава 2. Уровни биоразнообразия
- •2.1. Системная концепция биоразнообразия
- •2.2. Генетическое разнообразие
- •2.3. Видовое разнообразие
- •2.3.1. Динамика видового разнообразия
- •2.3.3. Динамика видового богатства по данным палеонтологической летописи
- •2.4. Биоразнообразие, созданное человеком
- •2.5. Экосистемное разнообразие
- •Глава 3. Классификации биоразнообразия
- •3.1. Инвентаризационное и дифференцирующее разнообразие
- •3.2. Таксономическое и типологическое разнообразие организмов
- •3.3. Биохорологическое разнообразие
- •3.4. Структурное разнообразие
- •Глава 4. Таксономическое разнообразие
- •4.1. Научная классификация организмов
- •4.2. Жизненные формы и биологическое разнообразие
- •4.3. Инвентаризация видов
- •Число видов в истории жизни на Земле
- •4.4. Видовое богатство России
- •Разнообразие, эндемизм и состояние видов позвоночных
- •Глава 5. Измерение и оценка биологического разнообразия
- •5.1. Параметры биологического разнообразия (альфа-разнообразие)
- •5.2. Методы построения графиков видового обилия
- •Типы графиков в анализе видового разнообразия
- •5.3. Модели распределения видового обилия
- •5.3.1. Геометрический ряд
- •5.3.2. Логарифмическое распределение
- •5.3.3. Логарифмическинормальное распределение
- •5.3.4. Распределение по модели «разломанного стержня» Макартура
- •5.3.5. Другие теоретические модели
- •5.4. Индексы биоразнообразия
- •5.4.1. Индексы видового богатства
- •5.4.2. Индексы, основанные на относительном обилии видов
- •5.5. Сравнительный анализ индексов разнообразия
- •5.6. Рекомендации для анализа данных по разнообразию видов
- •5.7. Анализ бета-разнообразия: сравнение, сходство, соответствие сообществ
- •5.7.1. Показатели сходства, основанные на мерах разнообразия
- •Мера Коуди разработана для исследования изменений в сообществе птиц вдоль средового градиента:
- •5.7.2. Показатели соответствия
- •5.7.3. Основные индексы общности для видовых списков
- •Основные индексы общности, учитывающие положительные совпадения [Песенко, 1982]
- •5.7.4. Индекс общности для количественных данных
- •5.8. Графический анализ бета-разнообразия
- •5.8.1. Неориентированные и ориентированные графы
- •Матрица сходства выборочных совокупностей
- •5.8.2. Плеяды Терентьева
- •5.8.3. Дендрограмма (кластерный анализ)
- •5.9. Применение показателей разнообразия
- •5.10. Гамма-разнообразие наземных экосистем
- •5.10.1. Пространственные показатели гамма-разнообразия
- •5.10.2. Разномасштабные уровни гамма-разнообразия
- •5.10.3. Информационные показатели гамма-разнообразия фитоценохор
- •Глава 6. Оценка биоразнообразия и охрана природы
- •Раздел II. Разнообразие ландшафта и методы его измерения
- •Введение
- •Глава 1. Общие представления о разнообразии
- •1.1. Что такое разнообразие? (Прагматический аспект)
- •1.4. Разнообразие и функционирование
- •Глава 2. Феноменологические иерархические уровни
- •Глава 3. Измерение ландшафтного разнообразия
- •3.1. Измерение ландшафтного разнообразия на основе дистанционной информации
- •Корреляционная матрица между каналами
- •Собственные значения главных компонент для трех каналов Landsat -7 (1999.10)
- •Факторные нагрузки – коэффициенты корреляции переменных с факторами для трех каналов Landsat- 7 (1999.01)
- •Оценка разнообразия (бит) подстилающей поверхности по многоканальным изображениям
- •Разнообразия изображения по объединенным данным осенней и летней съемки
- •Расчет фрактальной размерности по модели «изменение масштаба– изменение длины береговой линии»
- •Оценка фрактальной размерности по двухмерному спектру для всего изображения
- •Линейные корреляции между ландшафтными метриками разнообразия для иерархического уровня 9 пикселей (2 км)
- •3.2. Измерение ландшафтного биоразнообразия на основе использования топографических карт совместно со сканерной съемкой
- •3.3. Организация полевых исследований для оценки ландшафтного разнообразия
- •Глава 4. Прикладные задачи ландшафтного планирования, решаемые на основе измерения ландшафтного
- •Смысл индексов разнообразия, применительно к задачам ландшафтного планирования
- •Заключение
- •Основные характеристики спектральных каналов
- •Некоторые полезные ссылки на ресурсы Интернете
- •Литература
- •Раздел III. Мониторинг биоразнообразия Введение
- •Глава 1. Научные основы мониторинга биологического разнообразия. Определения и терминология
- •Глава 2. Методы оценки состояния и динамики биоразнообразия на разных иерархических уровнях
- •2.1. Биофизические и биохимические методы
- •2.1.1. Биолюминесценция
- •2.1.2. Фотосинтетическая активность
- •2.2. Генетические методы
- •2.3. Биоэнергетические методы
- •2.4. Иммунологические методы
- •2.4.1. Митогенная активность спленоцитов позвоночных животных
- •2.4.3. Применение иммунологических методов при изучении иммунозащитных реакций у рыб и беспозвоночных животных
- •2.5. Морфологические методы
- •2.5.1. Флуктуирующая асимметрия
- •2.5.2. Фенодевианты
- •2.6. Патологоанатомические и гистологические методы
- •2.6.1. Общая анатомия и гистология внутренних органов
- •2.6.2. Гистология репродуктивной системы
- •2.7. Токсикологические методы
- •2.8. Эмбриологические методы
- •2. 9. Паразитологические методы
- •2.10. Популяционные и экосистемные методы
- •Глава 3. Геоинформационные системы – интегрирующее ядро мониторинговой системы биоразнообразия
- •Глава 4. Средства обеспечения мониторинга биоразнообразия
- •4.1. Аппаратно-технические средства
- •4. 2. Программное обеспечение
- •4. 3. Организационное обеспечение
- •Раздел IV. Картографирование биоразнообразия Введение
- •Глава 1. Биогеографические основы картографирования биоразнообразия
- •Глава 2. Картографирование разнообразия организмов
- •Глава 3. Картографирование экологического разнообразия
- •Глава 4. Картографирование генетического разнообразия
- •Глава 5. Комплексное картографирование биоразнообразия
- •Р ис.2. Видовое разнообразие животных суши
- •Число видовое животных (на 100км2 суши)
- •Литература
- •117218, Москва, б. Черемушкинская ул., 34
- •109088, Москва, Шарикоподшипниковская ул., 4
5.8.3. Дендрограмма (кластерный анализ)
Если сравнивать несколько участков, хорошее представление о бета-разнообразии может дать кластерный анализ.
Кластерный анализ – один из методов многомерного анализа, сущность которого состоит в иерархической классификации объектов в разделении множества объектов на однородные группы. Графически иерархическая классификация отображается в виде дендрограммы (дерева).
Внутри каждой группы, получаемой в результате разбиения объектов на кластеры (группы), объекты более сходны, чем с объектами из других групп. Кластерный анализ начинается с составления матрицы сходства для каждой пары сравниваемых объектов. Затем проводится последовательное объединение объектов в группы по степени их сходства, пока все они не будут включены в одну группу. Поскольку интерпретация результатов кластерного анализа зависит от визуальной оценки дендрограммы, лучше всего использовать этот прием для малых массивов данных.
В качестве примера рассмотрим кластеризацию выборок на основе матрицы индексов сходства (табл. 5.8.1). Простейшие методы кластерного анализа, применяемого в биоценологии, биогеографии и числовой таксономии разными авторами, описаны Ю. А. Песенко [1982]. Эти методы могут быть с успехом использованы и в экологических исследованиях при анализе бета-разнообразия.
-
1,0
Д
Г
В
Е
А
Б
0,8
0,6
0,4
0,2
0
Рис. 5.8.4. Дендрограмма кластерного анализа шести объектов, построенная методом одиночного присоединения (ближайшего соседа)
В наиболее простых случаях процесс группировки начинается с нахождения в матрице индексов сходства пары наиболее сходных объектов. Самыми близкими объектами в примере, рассмотренном в табл. 5.8.1, являются Г и Д (0,90). Эти объекты отображаются на графике двумя соседними точками (рис. 5.8.4).
Отходящие от точек параллельные линии соединяются отрезком на уровне величины сходства и объединяются в один кластер. Затем в матрице индексов сходства находится второй по величине индекс сходства. Если он связывает два других, еще не объединенных в группу объекта, то их соединяют так же, как и первые два, но отдельно от них на соответствующем уровне сходства. В нашем примере вторая по силе связь имеется между объектами Г и В (0,85), при этом один из этих объектов уже объединен в кластер. В этом случае присоединение связанного с ним нового объекта может быть произведено тремя разными способами: одиночным, полным и средним присоединением.
Одиночное присоединение называют также «методом ближнего соседа». Метод впервые использован Серенсеном в 1948 году. Соединение групп производится по максимальному значению сходства между объектами из каждой группы. Следуя этому методу, объект В присоединяется к объектам ДГ, уже объединенным в кластер. Следующее по величине сходство – между объектами А и Б (0,80). Они объединяются в отдельный кластер на уровне сходства. Следующий шаг – присоединение объекта Е к группе из объединенных ранее объектов ДГВ, так как между объектами Е и Г сходство равно 0,75. На последнем этапе объединяются два сформированных ранее кластера ДГВЕ и АБ в один на уровне 0,60. Результаты объединения показаны на рис. 5.8.4.
Полное присоединение называется также «методом дальнего соседа». Метод был впервые предложен Снитом в 1957 году Согласно этому правилу, после формирования кластеров ДГ и АБ к группе АБ присоединяется объект Е, так как минимальное сходство этого объекта с объектами этого кластера равно 0,60. Объект В присоединяется к группе ДГ только на уровне 0,15 (минимальное сходство с каждым из объектов группы). Этот объект нельзя присоединить к кластеру ЕАБ, так как минимальное сходство объекта Е с объектами этой группы всего 0,1. Результаты объединения показаны на рис. 5.8.5.
Рис. 5.8.5. Дендрограмма кластерного анализа шести объектов, построенная методом полного присоединения (дальнего соседа)
С
1
2
3
4
Рис. 5.8.6. Дендрограмма кластерного анализа шести объектов, построенная методом среднего присоединения
Более сложные и разнообразные методы кластерного анализа реализуются с помощью вычислительной техники. Разработано множество статистических пакетов программ, таких как Statgraphics, Statistica, STADIA и другие, которые выполняют кластерный анализ.