
БИОМЕХАНИКА - раздел биофизики, в котором изучаются механические свойства живых тканей и механических процессов в организме.
При внешнем воздействии на объект (механических, электрических, тепловых и т.д.) возникают деформации. ДЕФОРМАЦИЯ – это изменения взаимного расположения точек тела, которое приводит к изменению его формы и размеров. Деформации делятся на упругие и пластические. Упругие деформации исчезают после прекращения внешнего воздействия. Пластические же при этом сохраняются.
Мы будем рассматривать деформации, происходящие под действием механических сил. Простейшие из них – деформация удлинения сжатия и деформация сдвига.
При действии на тело внешней деформирующей силы межатомные расстояния меняются, что приводит к возникновению внутренних сил, стремящихся вернуть атомы в первоначальное положение. Мерой этих сил является напряжение. Таким образом, МЕХАНИЧЕСКОЕ НАПРЯЖЕНИЕ - это мера внутренних сил, возникающих при деформировании материала, т.е. изменении его размеров и формы.
Тангенциальное
напряжение
Размерность
напряжения
ДЕФОРМАЦИЯ УДЛИНЕНИЯ-СЖАТИЯ.
Размерность – безразмерная величина
ЗАКОН ГУКА ДЛЯ ДЕФОРМАЦИИ УДЛИНЕНИЕ-СЖАТИЕ
Е – модуль Юнга, характеризующий упругие свойства вещества
Размерность
(Паскаль)
ДЕФОРМАЦИЯ СДВИГА
γ
tg γ – относительный сдвиг
Так как углы сдвига малы, можно считать, что
tg γ ≈ γ
Тогда ЗАКОН ГУКА ДЛЯ ДЕФОРМАЦИИ СДВИГА запишется следующим образом
,где G
- модуль сдвига.
ДИАГРАММА
РАСТЯЖЕНИЯ
Биологические
ткани содержат в своем составе биополимеры
– вещества, молекулы которых представляют
собой длинные цепи. Это прежде всего
белки (альбумин, коллаген, эластин),
полисахариды, гликопротеиды и т.д. Их
механические свойства резко отличаются
от свойств низкомолекулярных веществ.
Твердые тела(например, металлы) имеют
малые и обратимые деформации при большом
пределе прочности, так как силы упругости
определяется изменениями межатомных
расстояний. Жидкости обладают
неограниченной деформацией при малой
прочности. Полимеры достаточно прочны
и вместе с тем способны к большим
обратимым деформациям. При приложении
постоянной нагрузки к полимеру его
молекулы выпрямляются в соответствующем
направлении, и длина образца увеличивается.
Но это более длительный процесс, чем
удлинение твердого тела при постоянной
нагрузке. Свойство изменения деформации
со временем при постоянной нагрузке
называется
ползучестью. Эти
процессы в полимерах сходны с течением
вязкой жидкости, поэтому процесс
деформации их называют вязкоупругим.
Реологические модели
Упругие и вязкие свойства материалов ( в том числе и биологических тканей) можно моделировать сочетанием идеально упругих и вязких элементов.
Идеально упругий элемент – пружина. Процесс деформации происходит мгновенно и подчиняется закону Гука.
В момент t1 удлиняем пружину на величину Δl. В момент t2 отпускаем пружину , и она возвращается в исходное состояние.
2) Идеально вязкий элемент
Поршень имеет отверстия, через которые вязкая жидкость может перетекать. В момент t1 под действием приложенной силы поршень перемещается, в момент t2 действие силы прекращается , но модель не возвращается в исходное состояние.
Теперь рассмотрим некоторые механические модели, описывающие вязкоупругие свойства различных тканей. Механические характеристики таких систем изучают либо в изотоническом режиме, создавая определенное напряжение под действием постоянной силы, и измеряя изменение со временем длины образца исследуемого материала. Изометрический режим предполагает ступенчатое изменение длины образца и измерение в новом состоянии изменения напряжения со временем.
Модель Максвелла
И
При быстром возникновении напряжения под действием постоянной силы происходит практически мгновенное удлинение пружины и медленное перемещение поршня
Изометрический режим
При изменении длины на определенную величину в системе возникает максимальное для заданной длины напряжение σ0 постепенно уменьшается по мере перемещения поршня (релаксация напряжения)
Гладкие мышцы и другие компоненты стенок полых органов (желчного и мочевого пузырей, желудка, кишечника, кровеносных (венозных) и лимфатических сосудов и т.д.) испытывают обычно длительное воздействие постепенно нарастающих растягивающих усилий и ведут себя наподобие тела Максвелла. Только в самом начале действия силы они напрягаются, проявляя свои слабые упругие свойства, но затем напряжение их постепенно ослабевает благодаря деформации компонентов, обладающих вязкостными свойствами. Поэтому полые органы способны сильно растягиваться без развития напряжения.
4) Модель Кельвина – Фойгта.
Изотонический режим.
При действии постоянной силы (т.е. создания постоянного напряжения) удлинение модели соответствует экспоненциальному закону. При снятии напряжения удлинение уменьшается по этому же закону, хотя могут присутствовать остаточные деформации.
Изометрический режим
Если удлинить модель на определенную величину, возникнет соответствующее напряжение, не меняющееся со временем.