
- •1. Элементы линейной алгебры и аналитической геометрии
- •3. Даны векторы a(a1; a2; a3), b(b1; b2; b3), c(c1; c2; c3) и d(d1; d2; d3) в некотором базисе. Показать, что векторы a, b, c образуют базис, и найти координаты вектора d в этом базисе.
- •13. Даны координаты вершины пирамиды а1а2а3а4 .Найти:
- •33. Доказать совместность данной системы линейных уравнений и решить ее двумя способами: 1) методом Гаусса; 2) средствами матричного исчисления.
- •43. Найти размерность и базис пространства решений однородной системы линейных уравнений
- •53. Найти собственные значения и собственные векторы линейного преобразования, заданного в некотором базисе матриц.
- •63. Привести к каноническому виду уравнение линии второго порядка, используя теорию квадратичных форм
- •2. Введение в анализ
- •93. Найти пределы функций, не пользуясь правилом Лопиталя:
2. Введение в анализ
73. Построить
график функции
преобразованием графика функцииy=sinx.
Записав данную
функцию в виде
замечаем, что у неё А=
,
.
1. Строим одну волну синусоиды и отмечаем на ней несколько точек.
2. Увеличивая в 2.5
раза ординаты выбранных точек графика
функции и оставляя неизменными абсциссы,
затем, отображая полученную линию
зеркально относительно оси ОХ, графика
y=sinx,
строим график функции y=sinx.
3. Увеличивая в 4
раза абсциссы точек графика функции
y=sinx
и сохраняя неизменными ординаты, строим
график функции
.
4. Перенося точки
графика функции
в направлении оси абсцисс на 1/2 единицы
масштаба этой оси вправо, строим искомый
график функции
.
y=sinx
y=5/2sinx
83. Линия задана
уравнением
в
полярной системе координат. Требуется:
1) построить линию по точкам начиная от
φ=0 до φ=2π и придавая φ значения через
промежуток π/8; 2) найти уравнение данной
линии в декартовой прямоугольной системе
координат, у которой начало совпадает
с плюсом, а положительная полуось абсцисс
– с полярной осью и по уравнению в
декартовой прямоугольной системе
координат определить, какая это линия.
1)
φ |
r |
0 |
0,80 |
π/8 |
0,84 |
π/4 |
0,97 |
3π/8 |
1,27 |
π/2 |
2,00 |
5π/8 |
4,70 |
3π/4 |
-32,97 |
7π/8 |
-5,18 |
π |
-4,00 |
9π/8 |
-5,18 |
5π/4 |
-32,97 |
11π/8 |
4,70 |
3π/2 |
2,00 |
13π/8 |
1,27 |
7π/4 |
0,97 |
15π/8 |
0,84 |
2π |
0,80 |
2) Найдем уравнение данной линии в декартовой прямоугольной системе координат
Подставим это значение в уравнение линии:
Это уравнение данной линии в декартовой системе координат.
Эта линия является гиперболой.
93. Найти пределы функций, не пользуясь правилом Лопиталя:
а)
б)
в)
г)
103. Дана функция
и два значения аргумента х1=4,
х2=3.
Требуется: установить, является ли
данная функция непрерывной или разрывной
для каждого из данных значений х; 2) в
случае разрыва функции найти ее пределы
при приближении к точке разрыва слева
и справа; 3) сделать схематический
чертеж..
Данная функция определена и непрерывна на интервалах (-∞;3),(3;+∞).
Исследуем поведение функции в точках х1=4, х2=3. Найдём односторонние пределы.
При х=4 функция имеет одинаковые односторонние пределы, значит, в этой точке функция непрерывна. При х=3 функция имеет бесконечные пределы, значит, в этих точках функция разрывна.
113. Задана функция y=f(x) различными аналитическими выражениями для различных областей изменения независимой переменной. Найти точки разрыва функции, если они существуют. Сделать чертеж.
Данная функция определена и непрерывна на интервалах (-∞;0], (0,1],(1;+∞), где она задана непрерывными элементарными функциями. Исследуем поведение функции. В точках перехода от одного аналитического выражения к другому, т.е. в точках х=0 и х=1. Найдём односторонние пределы.
При х=0 функция имеет одинаковые односторонние пределы, значит, в этой точке функция непрерывна. Т.к. односторонние пределы при х=1 различны, то функция терпит в точке разрыв. А т.к. односторонние пределы конечны, то х=1 – точка разрыва первого рода. Функция имеет скачок в этой точке равный 3-1=2.
График этой функции: