
К.р. №1 2 вариант
.doc
Элементы линейной алгебры и аналитической геометрии
2. Даны векторы a(a1; a2; a3), b(b1; b2; b3), c(c1; c2; c3) и d(d1; d2; d3) в некотором базисе. Показать, что векторы a, b, c образуют базис, и найти координаты вектора d в этом базисе.
a (3;-5;2), b (4;5;1), c (-3;0;-4), d (-4;5;-16).
Векторы a, b, c образуют базис в пространстве R3 в том случае, если равенство a + b + c = 0 выполняется лишь тогда, когда = = = 0.
Рассмотрим это условие:
(3;-5;2) + (4;5;1) + (-3;0;-4) = (0;0;0) или
Рассмотрим матрицу данной системы и приведем ее к треугольному виду:
Умножим
первую строку на 5, вторую на 3 и сложим
их, умножим первую строку на -2, третью
на 3 и сложим их ;
умножим третью строку на 7 и сложим со
второй строкой
.
Так как число ненулевых строк в треугольной матрице равно числу переменных, то система имеет единственное решение, а именно = = = 0. Значит, векторы a, b, c образуют базис. Вектор d в базисе a, b, c имеет вид:
1a + 1b + 1c = d.
В расширенном виде:
Рассмотрим расширенную матрицу системы и приведем ее к треугольному виду (см. предыдущие действия):
Получим систему:
Значит, вектор d в базисе a, b, c имеет координаты d(1;2;5).
12. Даны координаты вершины пирамиды А1А2А3А4 .Найти:
1) длину ребра А1А2;
2) угол между ребрами А1А2 и А1А4;
3) угол между ребром А1А4 и гранью А1А2А3;
4) площадь грани А1А2А3;
5) объём пирамиды;
6) уравнение прямой А1А2;
7) уравнение плоскости А1А2А3;
8) уравнения высоты, опущенной из вершины А4 на грань А1А2А3;
Сделать чертёж.
А1(3;3;9), А2(6;9;1),А3(1;7;3), А4(8;5;8)
-
Длина ребра А1А2 равна расстоянию между этими точками, которое находится по формуле : А
-
Угол между рёбрами А1А2 и А1А4 равен углу между векторами А1А2 и А1А4. Найдём координаты этих векторов.
А1А2 =(6-3;9-3;1-9)=(3;6;-8)
А1А4=(8-3;5-3;8-9)=(5;2;-1)
Тогда, если φ угол между векторами А1А2 и А1А4, то
Тогда
-
Угол между ребром А1А4 и гранью А1А2А3 найдём следующим образом: для начала узнаем уравнение грани А1А2А3, затем выпишем нормальный вектор этой грани, найдём угол между нормалью к грани А1А2А3 и вектором А1А4. Тогда искомый угол между гранью А1А2А3 и вектором А1А4 есть разность 900 и полученного последнего угла.
Уравнение плоскости А1А2А3 получим как уравнение плоскости, проходящей через три точки, а именно
или
Значит, нормальный вектор будет иметь координаты N=(-2;17;12). Найдём угол между нормалью к грани А1А2А3 и вектором А1А4.
Тогда
Значит, угол между гранью А1А2А3 и вектором А1А4 равен 60.
-
Найдём координаты векторов А1А2 и А1А3.
А1А2 =(6-3;9-3;1-9)=(3;6;-8)
А1А3=(1-3;7-3;3-9)=(-2;4;-6)
Тогда площадь грани А1А2А3 будет равна
ед2
-
Объём треугольной пирамиды равен одной шестой объема параллелепипеда, построенного на рёбрах А1А2 , А1А3, А1А4. Тогда
(ед3)
-
Уравнение прямой А1А2 имеет вид:
, где (x0;y0;z0 ) – координаты точки, через которую проходит прямая, а (l;m;n) – координаты направляющего вектора. За координаты (x0;y0;z0 ) можно выбрать координаты точки А1, а за направляющий вектор взять вектор А1А2. Тогда получим:
–
уравнение прямой
А1А2
в симметричном виде.
-
Уравнение плоскости А1А2А3 было найдено в пункте 3), а именно
–
уравнение плоскости
в нормальном виде.
-
Высота, опущенная из вершины А4 на грань А1А2А3 имеет своим направляющим вектором нормальный вектор плоскости А1А2А3 , а значит
-
уравнение высоты в симметричном виде.
Сделаем чертёж.
22. Составить уравнение линии, каждая точка которой находится вдвое дальше от точки А(3;0) чем от оси ординат.
Пусть M(x;y) – произвольная точка искомой кривой. Найдем нужные расстояния:
d
=
=
– расстояние от точки
А(3;0) до
произвольной точки кривой;
d
=
=
=
– расстояние от произвольной точки
кривой до оси ординат. Тогда
или
;
Это гипербола с
полуосями а= 0 и b=
центром в точке (-1;0).
32. Доказать совместность данной системы линейных уравнений и решить ее двумя способами: 1) методом Гаусса; 2) средствами матричного исчисления.
1) Для решения системы методом Гаусса рассмотрим расширенную матрицу системы и приведем ее к треугольному виду:
= [поменяем местами
первую и третью строки]=
=
[умножаем первую строчку на -2 и складываем
со второй, умножаем первую на -5 и
складываем с третьей ] =
= [умножаем третью строку на 7, вторую на
-2 и складываем их] =
Ранг расширенной матрицы равен числу ненулевых строк, т.е. равен 3. Теперь рассмотрим матрицу А и приведём её к треугольному виду аналогичными действиями:
.
Ранг матрицы равен числу ненулевых строк, т.е. равен 3. Так как ранг матрицы системы совпадает с рангом расширенной матрицы, то система совместна.
Тогда получим систему:
Тогда получим решение:
x3 = 0; x2 = -1; x1 =3.
2) Для решения
матричным методом нужно рассмотреть
матричное уравнение: AX
= B,
где A
=
,
X
=
,
B
=
.
Тогда X = A-1B.
Вычислим обратную
матрицу
.
Тогда A-1
=
Получим X
= A-1B
==
=
.
42. Найти размерность и базис пространства решений однородной системы линейных уравнений
Рассмотрим расширенную матрицу системы и приведем ее к треугольному виду:
= [умножаем первую
строчку на -2, вторую на 3 и складываем
их, умножаем первую на -4, третью на 3 и
складываем их] =
= [ складываем вторую строку с третьей]
=
.
Ранг расширенной матрицы равен числу ненулевых строк, т.е. равен 2. Теперь рассмотрим матрицу А и приведём её к треугольному виду аналогичными действиями:
.
Ранг матрицы равен числу ненулевых строк, т.е. равен 2. Так как ранг матрицы системы совпадает с рангом расширенной матрицы, то система совместна.
Тогда получим систему:
Пусть х3=t, х4=s тогда получим решение:
х4=s,
x3
= t;
x2
=;
x1
=
.
52. Найти собственные значения и собственные векторы линейного преобразования, заданного в некотором базисе матриц.
Характеристическое уравнение имеет вид:
1=-1,
2=-1,
3=4
– собственные значения линейного
преобразования.
Для
1=-1
и
2=-1
найдём собственный вектор.
Собственный вектор
для
1=-1
и
2=-1
имеет вид (0;0;0).
Для
3=4
найдём собственный вектор.
.
Собственный вектор
для
3=4
имеет вид (0;0;
0).
62. Привести к каноническому виду уравнение линии второго порядка, используя теорию квадратичных форм
Запишем данное
уравнение в виде:
Найдём матрицу Т
ортогонального оператора, приводящего
данную квадратичную форму
к каноническому
виду.
Запишем характеристическую матрицу:
Её корнями являются
значения
1=1,
2=6.
Для
1=1
найдём собственный вектор.
,
где t
– любое число.
Собственный
вектор-столбец для
1=1
имеет вид
.
Тогда
есть нормированный собственный
вектор-столбец.
Для
2=7
найдём собственный вектор.
,
где s
– любое число.
Собственный
вектор-столбец для
2=6
имеет вид
.
Тогда
есть нормированный собственный
вектор-столбец.
Ортогональный
оператор, приводящий квадратичную форму
к каноническому виду, имеет матрицу
.
Базисными векторами
новой системы координат
являются:
В системе координат
уравнение данной фигуры примет вид:
Это эллипс, центр
которого находится в точке (0,0) относительно
системы координат
,
а оси симметрии параллельны координатным
осям этой системы.