Добавил:
Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Лабораторный практикум Заводян А.В. / Лабораторный практикум Заводян А.В..doc
Скачиваний:
429
Добавлен:
25.03.2014
Размер:
24.35 Mб
Скачать

Термическое испарение материалов в вакууме

Термическое испарение заключается в нагреве материала (используемого для нанесения на подложку) в высоком вакууме (при давлении не более Па) до температуры, при которой давление его собственных паров на несколько порядков превышает давление остаточных газов в рабочем пространстве вакуумной камеры. При этом атомы испаряющегося материала распространяются прямолинейно, так как длина их свободного пробега значительно превышает расстояние испаритель (источник испаряемого материала) - подложка. Далее следует конденсация частиц испарившегося потока на поверхности подложки (платы), имеющей температуру значительно ниже температуры испарителя.

Следовательно, при осаждения пленок методом термического испарения в вакууме (термовакуумного испарения или термовакуумного напыления) в процессе получения тонких пленок можно выделить три основные стадия:

  • образование атомарного (молекулярного) потока вещества из источника испаряемого материала (испарителя);

  • пролет атомов от испарителя к подложке;

  • конденсация вещества на подложке (этап осаждения материала в виде тонкой пленки).

Образование атомарного (молекулярного) потока при термическом испарении является результатом разрыва связей между поверхностными атомами испаряемого материала, если кинетическая энергия движения атомов превышает энергию связи между ними. Из табл.1 видно, что условная температура испарения большинства металлов выше температуры их плавления, т.е. испарение происходит по схеме: твердое вещество-жидкость-пар. Однако некоторые материалы, например хром, титан, довольно интенсивно испаряются из твердого состояния. Процесс перехода вещества из твердого состояния в парообразное, минуя жидкую фазу, называется сублимацией (или возгонкой). В зависимости от агрегатного состояния вещества во время испарения следует выбирать конструкцию испарителя. Тип испарителя зависит также от природы испаряемого материала (его одно- или многокомпонентное, химической активности, температуры испарения и др.), исходной формы материала. (гранулы, порошок, проволока), требуемой скорости испарения, ее, постоянства во времени и ряда других факторов. В табл.2 приведены температуры и скорости испарения широко применяемых в тонкопленоч­ной технологии металлов в зависимости от их давления насыщенных паров.

Таблица 1

Температуры плавления, кипения, испарения металлов, наиболее часто применяемых при изготовлении мсб

Металл

Температура T,°С

плавления

кипения

испарения*

Алюминий Ванадий

Вольфрам

Медь

Молибден

Никель

Тантал

Титан

Хром

660

1900

3410

1083

2620

1453

2996

1665

1890

2486

3400

5930

2600

4800

2900

5300

3227

2480

1250

2400

3309

1273

2533

1510

3070

1546

1205

*Приведена условная, практически установленная температура ис­парения, при которой давление насыщенного пара вещества составляет приблизительно 1,3 Па. Температуры плавления и кипения указаны для давления 101,3∙103 Па.

Таблица 2

Температуры и скорости испарения металлов