
- •Cloud Computing
- •Foreword
- •Preface
- •Introduction
- •Expected Audience
- •Book Overview
- •Part 1: Cloud Base
- •Part 2: Cloud Seeding
- •Part 3: Cloud Breaks
- •Part 4: Cloud Feedback
- •Contents
- •1.1 Introduction
- •1.1.1 Cloud Services and Enabling Technologies
- •1.2 Virtualization Technology
- •1.2.1 Virtual Machines
- •1.2.2 Virtualization Platforms
- •1.2.3 Virtual Infrastructure Management
- •1.2.4 Cloud Infrastructure Manager
- •1.3 The MapReduce System
- •1.3.1 Hadoop MapReduce Overview
- •1.4 Web Services
- •1.4.1 RPC (Remote Procedure Call)
- •1.4.2 SOA (Service-Oriented Architecture)
- •1.4.3 REST (Representative State Transfer)
- •1.4.4 Mashup
- •1.4.5 Web Services in Practice
- •1.5 Conclusions
- •References
- •2.1 Introduction
- •2.2 Background and Related Work
- •2.3 Taxonomy of Cloud Computing
- •2.3.1 Cloud Architecture
- •2.3.1.1 Services and Modes of Cloud Computing
- •Software-as-a-Service (SaaS)
- •Platform-as-a-Service (PaaS)
- •Hardware-as-a-Service (HaaS)
- •Infrastructure-as-a-Service (IaaS)
- •2.3.2 Virtualization Management
- •2.3.3 Core Services
- •2.3.3.1 Discovery and Replication
- •2.3.3.2 Load Balancing
- •2.3.3.3 Resource Management
- •2.3.4 Data Governance
- •2.3.4.1 Interoperability
- •2.3.4.2 Data Migration
- •2.3.5 Management Services
- •2.3.5.1 Deployment and Configuration
- •2.3.5.2 Monitoring and Reporting
- •2.3.5.3 Service-Level Agreements (SLAs) Management
- •2.3.5.4 Metering and Billing
- •2.3.5.5 Provisioning
- •2.3.6 Security
- •2.3.6.1 Encryption/Decryption
- •2.3.6.2 Privacy and Federated Identity
- •2.3.6.3 Authorization and Authentication
- •2.3.7 Fault Tolerance
- •2.4 Classification and Comparison between Cloud Computing Ecosystems
- •2.5 Findings
- •2.5.2 Cloud Computing PaaS and SaaS Provider
- •2.5.3 Open Source Based Cloud Computing Services
- •2.6 Comments on Issues and Opportunities
- •2.7 Conclusions
- •References
- •3.1 Introduction
- •3.2 Scientific Workflows and e-Science
- •3.2.1 Scientific Workflows
- •3.2.2 Scientific Workflow Management Systems
- •3.2.3 Important Aspects of In Silico Experiments
- •3.3 A Taxonomy for Cloud Computing
- •3.3.1 Business Model
- •3.3.2 Privacy
- •3.3.3 Pricing
- •3.3.4 Architecture
- •3.3.5 Technology Infrastructure
- •3.3.6 Access
- •3.3.7 Standards
- •3.3.8 Orientation
- •3.5 Taxonomies for Cloud Computing
- •3.6 Conclusions and Final Remarks
- •References
- •4.1 Introduction
- •4.2 Cloud and Grid: A Comparison
- •4.2.1 A Retrospective View
- •4.2.2 Comparison from the Viewpoint of System
- •4.2.3 Comparison from the Viewpoint of Users
- •4.2.4 A Summary
- •4.3 Examining Cloud Computing from the CSCW Perspective
- •4.3.1 CSCW Findings
- •4.3.2 The Anatomy of Cloud Computing
- •4.3.2.1 Security and Privacy
- •4.3.2.2 Data and/or Vendor Lock-In
- •4.3.2.3 Service Availability/Reliability
- •4.4 Conclusions
- •References
- •5.1 Overview – Cloud Standards – What and Why?
- •5.2 Deep Dive: Interoperability Standards
- •5.2.1 Purpose, Expectations and Challenges
- •5.2.2 Initiatives – Focus, Sponsors and Status
- •5.2.3 Market Adoption
- •5.2.4 Gaps/Areas of Improvement
- •5.3 Deep Dive: Security Standards
- •5.3.1 Purpose, Expectations and Challenges
- •5.3.2 Initiatives – Focus, Sponsors and Status
- •5.3.3 Market Adoption
- •5.3.4 Gaps/Areas of Improvement
- •5.4 Deep Dive: Portability Standards
- •5.4.1 Purpose, Expectations and Challenges
- •5.4.2 Initiatives – Focus, Sponsors and Status
- •5.4.3 Market Adoption
- •5.4.4 Gaps/Areas of Improvement
- •5.5.1 Purpose, Expectations and Challenges
- •5.5.2 Initiatives – Focus, Sponsors and Status
- •5.5.3 Market Adoption
- •5.5.4 Gaps/Areas of Improvement
- •5.6 Deep Dive: Other Key Standards
- •5.6.1 Initiatives – Focus, Sponsors and Status
- •5.7 Closing Notes
- •References
- •6.1 Introduction and Motivation
- •6.2 Cloud@Home Overview
- •6.2.1 Issues, Challenges, and Open Problems
- •6.2.2 Basic Architecture
- •6.2.2.1 Software Environment
- •6.2.2.2 Software Infrastructure
- •6.2.2.3 Software Kernel
- •6.2.2.4 Firmware/Hardware
- •6.2.3 Application Scenarios
- •6.3 Cloud@Home Core Structure
- •6.3.1 Management Subsystem
- •6.3.2 Resource Subsystem
- •6.4 Conclusions
- •References
- •7.1 Introduction
- •7.2 MapReduce
- •7.3 P2P-MapReduce
- •7.3.1 Architecture
- •7.3.2 Implementation
- •7.3.2.1 Basic Mechanisms
- •Resource Discovery
- •Network Maintenance
- •Job Submission and Failure Recovery
- •7.3.2.2 State Diagram and Software Modules
- •7.3.3 Evaluation
- •7.4 Conclusions
- •References
- •8.1 Introduction
- •8.2 The Cloud Evolution
- •8.3 Improved Network Support for Cloud Computing
- •8.3.1 Why the Internet is Not Enough?
- •8.3.2 Transparent Optical Networks for Cloud Applications: The Dedicated Bandwidth Paradigm
- •8.4 Architecture and Implementation Details
- •8.4.1 Traffic Management and Control Plane Facilities
- •8.4.2 Service Plane and Interfaces
- •8.4.2.1 Providing Network Services to Cloud-Computing Infrastructures
- •8.4.2.2 The Cloud Operating System–Network Interface
- •8.5.1 The Prototype Details
- •8.5.1.1 The Underlying Network Infrastructure
- •8.5.1.2 The Prototype Cloud Network Control Logic and its Services
- •8.5.2 Performance Evaluation and Results Discussion
- •8.6 Related Work
- •8.7 Conclusions
- •References
- •9.1 Introduction
- •9.2 Overview of YML
- •9.3 Design and Implementation of YML-PC
- •9.3.1 Concept Stack of Cloud Platform
- •9.3.2 Design of YML-PC
- •9.3.3 Core Design and Implementation of YML-PC
- •9.4 Primary Experiments on YML-PC
- •9.4.1 YML-PC Can Be Scaled Up Very Easily
- •9.4.2 Data Persistence in YML-PC
- •9.4.3 Schedule Mechanism in YML-PC
- •9.5 Conclusion and Future Work
- •References
- •10.1 Introduction
- •10.2 Related Work
- •10.2.1 General View of Cloud Computing frameworks
- •10.2.2 Cloud Computing Middleware
- •10.3 Deploying Applications in the Cloud
- •10.3.1 Benchmarking the Cloud
- •10.3.2 The ProActive GCM Deployment
- •10.3.3 Technical Solutions for Deployment over Heterogeneous Infrastructures
- •10.3.3.1 Virtual Private Network (VPN)
- •10.3.3.2 Amazon Virtual Private Cloud (VPC)
- •10.3.3.3 Message Forwarding and Tunneling
- •10.3.4 Conclusion and Motivation for Mixing
- •10.4 Moving HPC Applications from Grids to Clouds
- •10.4.1 HPC on Heterogeneous Multi-Domain Platforms
- •10.4.2 The Hierarchical SPMD Concept and Multi-level Partitioning of Numerical Meshes
- •10.4.3 The GCM/ProActive-Based Lightweight Framework
- •10.4.4 Performance Evaluation
- •10.5 Dynamic Mixing of Clusters, Grids, and Clouds
- •10.5.1 The ProActive Resource Manager
- •10.5.2 Cloud Bursting: Managing Spike Demand
- •10.5.3 Cloud Seeding: Dealing with Heterogeneous Hardware and Private Data
- •10.6 Conclusion
- •References
- •11.1 Introduction
- •11.2 Background
- •11.2.1 ASKALON
- •11.2.2 Cloud Computing
- •11.3 Resource Management Architecture
- •11.3.1 Cloud Management
- •11.3.2 Image Catalog
- •11.3.3 Security
- •11.4 Evaluation
- •11.5 Related Work
- •11.6 Conclusions and Future Work
- •References
- •12.1 Introduction
- •12.2 Layered Peer-to-Peer Cloud Provisioning Architecture
- •12.4.1 Distributed Hash Tables
- •12.4.2 Designing Complex Services over DHTs
- •12.5 Cloud Peer Software Fabric: Design and Implementation
- •12.5.1 Overlay Construction
- •12.5.2 Multidimensional Query Indexing
- •12.5.3 Multidimensional Query Routing
- •12.6 Experiments and Evaluation
- •12.6.1 Cloud Peer Details
- •12.6.3 Test Application
- •12.6.4 Deployment of Test Services on Amazon EC2 Platform
- •12.7 Results and Discussions
- •12.8 Conclusions and Path Forward
- •References
- •13.1 Introduction
- •13.2 High-Throughput Science with the Nimrod Tools
- •13.2.1 The Nimrod Tool Family
- •13.2.2 Nimrod and the Grid
- •13.2.3 Scheduling in Nimrod
- •13.3 Extensions to Support Amazon’s Elastic Compute Cloud
- •13.3.1 The Nimrod Architecture
- •13.3.2 The EC2 Actuator
- •13.3.3 Additions to the Schedulers
- •13.4.1 Introduction and Background
- •13.4.2 Computational Requirements
- •13.4.3 The Experiment
- •13.4.4 Computational and Economic Results
- •13.4.5 Scientific Results
- •13.5 Conclusions
- •References
- •14.1 Using the Cloud
- •14.1.1 Overview
- •14.1.2 Background
- •14.1.3 Requirements and Obligations
- •14.1.3.1 Regional Laws
- •14.1.3.2 Industry Regulations
- •14.2 Cloud Compliance
- •14.2.1 Information Security Organization
- •14.2.2 Data Classification
- •14.2.2.1 Classifying Data and Systems
- •14.2.2.2 Specific Type of Data of Concern
- •14.2.2.3 Labeling
- •14.2.3 Access Control and Connectivity
- •14.2.3.1 Authentication and Authorization
- •14.2.3.2 Accounting and Auditing
- •14.2.3.3 Encrypting Data in Motion
- •14.2.3.4 Encrypting Data at Rest
- •14.2.4 Risk Assessments
- •14.2.4.1 Threat and Risk Assessments
- •14.2.4.2 Business Impact Assessments
- •14.2.4.3 Privacy Impact Assessments
- •14.2.5 Due Diligence and Provider Contract Requirements
- •14.2.5.1 ISO Certification
- •14.2.5.2 SAS 70 Type II
- •14.2.5.3 PCI PA DSS or Service Provider
- •14.2.5.4 Portability and Interoperability
- •14.2.5.5 Right to Audit
- •14.2.5.6 Service Level Agreements
- •14.2.6 Other Considerations
- •14.2.6.1 Disaster Recovery/Business Continuity
- •14.2.6.2 Governance Structure
- •14.2.6.3 Incident Response Plan
- •14.3 Conclusion
- •Bibliography
- •15.1.1 Location of Cloud Data and Applicable Laws
- •15.1.2 Data Concerns Within a European Context
- •15.1.3 Government Data
- •15.1.4 Trust
- •15.1.5 Interoperability and Standardization in Cloud Computing
- •15.1.6 Open Grid Forum’s (OGF) Production Grid Interoperability Working Group (PGI-WG) Charter
- •15.1.7.1 What will OCCI Provide?
- •15.1.7.2 Cloud Data Management Interface (CDMI)
- •15.1.7.3 How it Works
- •15.1.8 SDOs and their Involvement with Clouds
- •15.1.10 A Microsoft Cloud Interoperability Scenario
- •15.1.11 Opportunities for Public Authorities
- •15.1.12 Future Market Drivers and Challenges
- •15.1.13 Priorities Moving Forward
- •15.2 Conclusions
- •References
- •16.1 Introduction
- •16.2 Cloud Computing (‘The Cloud’)
- •16.3 Understanding Risks to Cloud Computing
- •16.3.1 Privacy Issues
- •16.3.2 Data Ownership and Content Disclosure Issues
- •16.3.3 Data Confidentiality
- •16.3.4 Data Location
- •16.3.5 Control Issues
- •16.3.6 Regulatory and Legislative Compliance
- •16.3.7 Forensic Evidence Issues
- •16.3.8 Auditing Issues
- •16.3.9 Business Continuity and Disaster Recovery Issues
- •16.3.10 Trust Issues
- •16.3.11 Security Policy Issues
- •16.3.12 Emerging Threats to Cloud Computing
- •16.4 Cloud Security Relationship Framework
- •16.4.1 Security Requirements in the Clouds
- •16.5 Conclusion
- •References
- •17.1 Introduction
- •17.1.1 What Is Security?
- •17.2 ISO 27002 Gap Analyses
- •17.2.1 Asset Management
- •17.2.2 Communications and Operations Management
- •17.2.4 Information Security Incident Management
- •17.2.5 Compliance
- •17.3 Security Recommendations
- •17.4 Case Studies
- •17.4.1 Private Cloud: Fortune 100 Company
- •17.4.2 Public Cloud: Amazon.com
- •17.5 Summary and Conclusion
- •References
- •18.1 Introduction
- •18.2 Decoupling Policy from Applications
- •18.2.1 Overlap of Concerns Between the PEP and PDP
- •18.2.2 Patterns for Binding PEPs to Services
- •18.2.3 Agents
- •18.2.4 Intermediaries
- •18.3 PEP Deployment Patterns in the Cloud
- •18.3.1 Software-as-a-Service Deployment
- •18.3.2 Platform-as-a-Service Deployment
- •18.3.3 Infrastructure-as-a-Service Deployment
- •18.3.4 Alternative Approaches to IaaS Policy Enforcement
- •18.3.5 Basic Web Application Security
- •18.3.6 VPN-Based Solutions
- •18.4 Challenges to Deploying PEPs in the Cloud
- •18.4.1 Performance Challenges in the Cloud
- •18.4.2 Strategies for Fault Tolerance
- •18.4.3 Strategies for Scalability
- •18.4.4 Clustering
- •18.4.5 Acceleration Strategies
- •18.4.5.1 Accelerating Message Processing
- •18.4.5.2 Acceleration of Cryptographic Operations
- •18.4.6 Transport Content Coding
- •18.4.7 Security Challenges in the Cloud
- •18.4.9 Binding PEPs and Applications
- •18.4.9.1 Intermediary Isolation
- •18.4.9.2 The Protected Application Stack
- •18.4.10 Authentication and Authorization
- •18.4.11 Clock Synchronization
- •18.4.12 Management Challenges in the Cloud
- •18.4.13 Audit, Logging, and Metrics
- •18.4.14 Repositories
- •18.4.15 Provisioning and Distribution
- •18.4.16 Policy Synchronization and Views
- •18.5 Conclusion
- •References
- •19.1 Introduction and Background
- •19.2 A Media Service Cloud for Traditional Broadcasting
- •19.2.1 Gridcast the PRISM Cloud 0.12
- •19.3 An On-demand Digital Media Cloud
- •19.4 PRISM Cloud Implementation
- •19.4.1 Cloud Resources
- •19.4.2 Cloud Service Deployment and Management
- •19.5 The PRISM Deployment
- •19.6 Summary
- •19.7 Content Note
- •References
- •20.1 Cloud Computing Reference Model
- •20.2 Cloud Economics
- •20.2.1 Economic Context
- •20.2.2 Economic Benefits
- •20.2.3 Economic Costs
- •20.2.5 The Economics of Green Clouds
- •20.3 Quality of Experience in the Cloud
- •20.4 Monetization Models in the Cloud
- •20.5 Charging in the Cloud
- •20.5.1 Existing Models of Charging
- •20.5.1.1 On-Demand IaaS Instances
- •20.5.1.2 Reserved IaaS Instances
- •20.5.1.3 PaaS Charging
- •20.5.1.4 Cloud Vendor Pricing Model
- •20.5.1.5 Interprovider Charging
- •20.6 Taxation in the Cloud
- •References
- •21.1 Introduction
- •21.2 Background
- •21.3 Experiment
- •21.3.1 Target Application: Value at Risk
- •21.3.2 Target Systems
- •21.3.2.1 Condor
- •21.3.2.2 Amazon EC2
- •21.3.2.3 Eucalyptus
- •21.3.3 Results
- •21.3.4 Job Completion
- •21.3.5 Cost
- •21.4 Conclusions and Future Work
- •References
- •Index

242 |
S.R. Chaput and K. Ringwood |
to be, but neither will it necessarily publicize every piece of Personally Identifiable Information (PII) an organization provides, which is what many fear would happen. The largest challenges with respect to engaging the cloud occur in the preparation of a company for the cloud. This typically includes ensuring strong information security governance and a clear understanding of the organization’s legal and regulatory landscape. In fact, outsourcing to the cloud could not be considered successful without previously achieving an organizational security maturity level of four.
Another potential challenge with using the cloud surrounds how significant an influence – if any – an organization can have with respect to modifying the way the cloud operates, imposing and/or strengthening the liability terms of the contracts, requesting and receiving the assurances required from the vendor, and having a firm grasp on the enforcement of the solid legal agreement once it is put in place.
14.1.2 Background
As organizations mature and core competencies are developed, it may seem that onsidering the cloud for specific types of applications, systems, infrastructure, and platforms would be the next logical step. Cloud computing, although potentially more granular and more distributed in nature, is not in fact radically different from traditional outsourcing or off-shoring arrangements: the same amount of diligence and preparation is needed to start such an exercise. Much work on the topic of cloud computing security has already been done by organizations such as the Cloud Security Alliance (http://www.cloudsecurityalliance.org). For more detailed information on the topics discussed here, it is recommended you read the most recent version of their “Security Guidance for Critical Areas of Focus in Cloud Computing”. The “audit & compliance” section of version 1 of that document was the foundation for much of this chapter’s content, albeit at a higher level. The subsequent releases of the Cloud Security Alliance’s Guidance documents will likely go into more detail.
14.1.3 Requirements and Obligations
First, an organization needs to understand the legislative and regulatory landscape in which it resides and operates. If a company processes credit cards, it will likely be subject to the Payment Card Industry’s Data Security Standard (PCI DSS).1 Similarly, if the company handles Personally Identifiable Information (PII), it is
1 https://www.pcisecuritystandards.org/security_standards/pci_dss.shtml

14 Cloud Compliance: A Framework for Using Cloud Computing in a Regulated World |
243 |
quite likely that it is subject to various privacy legislations, such as the European Union’s Data Protection Directive (EU DPD),2 or Canada’s Personal Information Protection Electronic Documents Act (PIPEDA),3 thus requiring an organization to follow specific guidelines without deviation or compromise regardless of how well they align with internal policies. These are just two examples of how legislation or regulation can shape a company’s information security structure and alter or add to the needs with which an organization will approach the cloud provider.
14.1.3.1 Regional Laws
It is nearly impossible to list all of the relevant regional laws, which may shape or otherwise affect the requirements necessary to consider when outsourcing to the cloud. As mentioned previously, privacy is an excellent example of a topic with specific regional laws. When looking at Canada and the United States of America, there are dozens of individual laws that are geographically binding and as a result may take priority over others, even though on the whole they may not be substantially different. To further complicate matters, if an organization operates in more than one jurisdiction, it is likely subject to each respective law. This is an area where the lawyers excel and can help an organization understand which regulations will take precedence over others.
To further add to the confusion, agreements such as the International Safe Harbor Privacy Principles4 can make an organization subject to laws in areas where it does not even operate. A good example would be the US-EU Safe Harbor agreement5 meant to provide a streamlined process for companies outside the EU’s jurisdiction that will have a chance – by demonstrating compliance with EU Directive 95/42/EC on protection of personal data – to gain the benefits of trade with EU companies requiring reciprocal compliance. This means that not only does an organization need to know its immediate legal responsibilities in respect to the region(s) within which it operates, but it also must stay ahead and aware of the additional types of arrangements to which it is privy and understand the related requirements.
Several Canadian provinces experienced an incredible effect of the Uniting and Strengthening America by Providing Appropriate Tools Required to Intercept and Obstruct Terrorism (USA PATRIOT) Act6 of the USA, even though the same provinces were not typically subject to foreign laws, not withstanding those of its closest neighboring country. Many government agencies were not permitted to use providers whose systems were physically in the USA, for the fear that their hosted data would
2 http://ec.europa.eu/justice_home/fsj/privacy/docs/lawreport/paper/ispa_en.pdf
3 http://www.priv.gc.ca/legislation/02_06_01_e.cfm
4 http://www.trade.gov/td/ecom/shprin.html
5 http://www.export.gov/safeharbor/eg_main_018236.asp
6 http://epic.org/privacy/terrorism/hr3162.html