
- •Cloud Computing
- •Foreword
- •Preface
- •Introduction
- •Expected Audience
- •Book Overview
- •Part 1: Cloud Base
- •Part 2: Cloud Seeding
- •Part 3: Cloud Breaks
- •Part 4: Cloud Feedback
- •Contents
- •1.1 Introduction
- •1.1.1 Cloud Services and Enabling Technologies
- •1.2 Virtualization Technology
- •1.2.1 Virtual Machines
- •1.2.2 Virtualization Platforms
- •1.2.3 Virtual Infrastructure Management
- •1.2.4 Cloud Infrastructure Manager
- •1.3 The MapReduce System
- •1.3.1 Hadoop MapReduce Overview
- •1.4 Web Services
- •1.4.1 RPC (Remote Procedure Call)
- •1.4.2 SOA (Service-Oriented Architecture)
- •1.4.3 REST (Representative State Transfer)
- •1.4.4 Mashup
- •1.4.5 Web Services in Practice
- •1.5 Conclusions
- •References
- •2.1 Introduction
- •2.2 Background and Related Work
- •2.3 Taxonomy of Cloud Computing
- •2.3.1 Cloud Architecture
- •2.3.1.1 Services and Modes of Cloud Computing
- •Software-as-a-Service (SaaS)
- •Platform-as-a-Service (PaaS)
- •Hardware-as-a-Service (HaaS)
- •Infrastructure-as-a-Service (IaaS)
- •2.3.2 Virtualization Management
- •2.3.3 Core Services
- •2.3.3.1 Discovery and Replication
- •2.3.3.2 Load Balancing
- •2.3.3.3 Resource Management
- •2.3.4 Data Governance
- •2.3.4.1 Interoperability
- •2.3.4.2 Data Migration
- •2.3.5 Management Services
- •2.3.5.1 Deployment and Configuration
- •2.3.5.2 Monitoring and Reporting
- •2.3.5.3 Service-Level Agreements (SLAs) Management
- •2.3.5.4 Metering and Billing
- •2.3.5.5 Provisioning
- •2.3.6 Security
- •2.3.6.1 Encryption/Decryption
- •2.3.6.2 Privacy and Federated Identity
- •2.3.6.3 Authorization and Authentication
- •2.3.7 Fault Tolerance
- •2.4 Classification and Comparison between Cloud Computing Ecosystems
- •2.5 Findings
- •2.5.2 Cloud Computing PaaS and SaaS Provider
- •2.5.3 Open Source Based Cloud Computing Services
- •2.6 Comments on Issues and Opportunities
- •2.7 Conclusions
- •References
- •3.1 Introduction
- •3.2 Scientific Workflows and e-Science
- •3.2.1 Scientific Workflows
- •3.2.2 Scientific Workflow Management Systems
- •3.2.3 Important Aspects of In Silico Experiments
- •3.3 A Taxonomy for Cloud Computing
- •3.3.1 Business Model
- •3.3.2 Privacy
- •3.3.3 Pricing
- •3.3.4 Architecture
- •3.3.5 Technology Infrastructure
- •3.3.6 Access
- •3.3.7 Standards
- •3.3.8 Orientation
- •3.5 Taxonomies for Cloud Computing
- •3.6 Conclusions and Final Remarks
- •References
- •4.1 Introduction
- •4.2 Cloud and Grid: A Comparison
- •4.2.1 A Retrospective View
- •4.2.2 Comparison from the Viewpoint of System
- •4.2.3 Comparison from the Viewpoint of Users
- •4.2.4 A Summary
- •4.3 Examining Cloud Computing from the CSCW Perspective
- •4.3.1 CSCW Findings
- •4.3.2 The Anatomy of Cloud Computing
- •4.3.2.1 Security and Privacy
- •4.3.2.2 Data and/or Vendor Lock-In
- •4.3.2.3 Service Availability/Reliability
- •4.4 Conclusions
- •References
- •5.1 Overview – Cloud Standards – What and Why?
- •5.2 Deep Dive: Interoperability Standards
- •5.2.1 Purpose, Expectations and Challenges
- •5.2.2 Initiatives – Focus, Sponsors and Status
- •5.2.3 Market Adoption
- •5.2.4 Gaps/Areas of Improvement
- •5.3 Deep Dive: Security Standards
- •5.3.1 Purpose, Expectations and Challenges
- •5.3.2 Initiatives – Focus, Sponsors and Status
- •5.3.3 Market Adoption
- •5.3.4 Gaps/Areas of Improvement
- •5.4 Deep Dive: Portability Standards
- •5.4.1 Purpose, Expectations and Challenges
- •5.4.2 Initiatives – Focus, Sponsors and Status
- •5.4.3 Market Adoption
- •5.4.4 Gaps/Areas of Improvement
- •5.5.1 Purpose, Expectations and Challenges
- •5.5.2 Initiatives – Focus, Sponsors and Status
- •5.5.3 Market Adoption
- •5.5.4 Gaps/Areas of Improvement
- •5.6 Deep Dive: Other Key Standards
- •5.6.1 Initiatives – Focus, Sponsors and Status
- •5.7 Closing Notes
- •References
- •6.1 Introduction and Motivation
- •6.2 Cloud@Home Overview
- •6.2.1 Issues, Challenges, and Open Problems
- •6.2.2 Basic Architecture
- •6.2.2.1 Software Environment
- •6.2.2.2 Software Infrastructure
- •6.2.2.3 Software Kernel
- •6.2.2.4 Firmware/Hardware
- •6.2.3 Application Scenarios
- •6.3 Cloud@Home Core Structure
- •6.3.1 Management Subsystem
- •6.3.2 Resource Subsystem
- •6.4 Conclusions
- •References
- •7.1 Introduction
- •7.2 MapReduce
- •7.3 P2P-MapReduce
- •7.3.1 Architecture
- •7.3.2 Implementation
- •7.3.2.1 Basic Mechanisms
- •Resource Discovery
- •Network Maintenance
- •Job Submission and Failure Recovery
- •7.3.2.2 State Diagram and Software Modules
- •7.3.3 Evaluation
- •7.4 Conclusions
- •References
- •8.1 Introduction
- •8.2 The Cloud Evolution
- •8.3 Improved Network Support for Cloud Computing
- •8.3.1 Why the Internet is Not Enough?
- •8.3.2 Transparent Optical Networks for Cloud Applications: The Dedicated Bandwidth Paradigm
- •8.4 Architecture and Implementation Details
- •8.4.1 Traffic Management and Control Plane Facilities
- •8.4.2 Service Plane and Interfaces
- •8.4.2.1 Providing Network Services to Cloud-Computing Infrastructures
- •8.4.2.2 The Cloud Operating System–Network Interface
- •8.5.1 The Prototype Details
- •8.5.1.1 The Underlying Network Infrastructure
- •8.5.1.2 The Prototype Cloud Network Control Logic and its Services
- •8.5.2 Performance Evaluation and Results Discussion
- •8.6 Related Work
- •8.7 Conclusions
- •References
- •9.1 Introduction
- •9.2 Overview of YML
- •9.3 Design and Implementation of YML-PC
- •9.3.1 Concept Stack of Cloud Platform
- •9.3.2 Design of YML-PC
- •9.3.3 Core Design and Implementation of YML-PC
- •9.4 Primary Experiments on YML-PC
- •9.4.1 YML-PC Can Be Scaled Up Very Easily
- •9.4.2 Data Persistence in YML-PC
- •9.4.3 Schedule Mechanism in YML-PC
- •9.5 Conclusion and Future Work
- •References
- •10.1 Introduction
- •10.2 Related Work
- •10.2.1 General View of Cloud Computing frameworks
- •10.2.2 Cloud Computing Middleware
- •10.3 Deploying Applications in the Cloud
- •10.3.1 Benchmarking the Cloud
- •10.3.2 The ProActive GCM Deployment
- •10.3.3 Technical Solutions for Deployment over Heterogeneous Infrastructures
- •10.3.3.1 Virtual Private Network (VPN)
- •10.3.3.2 Amazon Virtual Private Cloud (VPC)
- •10.3.3.3 Message Forwarding and Tunneling
- •10.3.4 Conclusion and Motivation for Mixing
- •10.4 Moving HPC Applications from Grids to Clouds
- •10.4.1 HPC on Heterogeneous Multi-Domain Platforms
- •10.4.2 The Hierarchical SPMD Concept and Multi-level Partitioning of Numerical Meshes
- •10.4.3 The GCM/ProActive-Based Lightweight Framework
- •10.4.4 Performance Evaluation
- •10.5 Dynamic Mixing of Clusters, Grids, and Clouds
- •10.5.1 The ProActive Resource Manager
- •10.5.2 Cloud Bursting: Managing Spike Demand
- •10.5.3 Cloud Seeding: Dealing with Heterogeneous Hardware and Private Data
- •10.6 Conclusion
- •References
- •11.1 Introduction
- •11.2 Background
- •11.2.1 ASKALON
- •11.2.2 Cloud Computing
- •11.3 Resource Management Architecture
- •11.3.1 Cloud Management
- •11.3.2 Image Catalog
- •11.3.3 Security
- •11.4 Evaluation
- •11.5 Related Work
- •11.6 Conclusions and Future Work
- •References
- •12.1 Introduction
- •12.2 Layered Peer-to-Peer Cloud Provisioning Architecture
- •12.4.1 Distributed Hash Tables
- •12.4.2 Designing Complex Services over DHTs
- •12.5 Cloud Peer Software Fabric: Design and Implementation
- •12.5.1 Overlay Construction
- •12.5.2 Multidimensional Query Indexing
- •12.5.3 Multidimensional Query Routing
- •12.6 Experiments and Evaluation
- •12.6.1 Cloud Peer Details
- •12.6.3 Test Application
- •12.6.4 Deployment of Test Services on Amazon EC2 Platform
- •12.7 Results and Discussions
- •12.8 Conclusions and Path Forward
- •References
- •13.1 Introduction
- •13.2 High-Throughput Science with the Nimrod Tools
- •13.2.1 The Nimrod Tool Family
- •13.2.2 Nimrod and the Grid
- •13.2.3 Scheduling in Nimrod
- •13.3 Extensions to Support Amazon’s Elastic Compute Cloud
- •13.3.1 The Nimrod Architecture
- •13.3.2 The EC2 Actuator
- •13.3.3 Additions to the Schedulers
- •13.4.1 Introduction and Background
- •13.4.2 Computational Requirements
- •13.4.3 The Experiment
- •13.4.4 Computational and Economic Results
- •13.4.5 Scientific Results
- •13.5 Conclusions
- •References
- •14.1 Using the Cloud
- •14.1.1 Overview
- •14.1.2 Background
- •14.1.3 Requirements and Obligations
- •14.1.3.1 Regional Laws
- •14.1.3.2 Industry Regulations
- •14.2 Cloud Compliance
- •14.2.1 Information Security Organization
- •14.2.2 Data Classification
- •14.2.2.1 Classifying Data and Systems
- •14.2.2.2 Specific Type of Data of Concern
- •14.2.2.3 Labeling
- •14.2.3 Access Control and Connectivity
- •14.2.3.1 Authentication and Authorization
- •14.2.3.2 Accounting and Auditing
- •14.2.3.3 Encrypting Data in Motion
- •14.2.3.4 Encrypting Data at Rest
- •14.2.4 Risk Assessments
- •14.2.4.1 Threat and Risk Assessments
- •14.2.4.2 Business Impact Assessments
- •14.2.4.3 Privacy Impact Assessments
- •14.2.5 Due Diligence and Provider Contract Requirements
- •14.2.5.1 ISO Certification
- •14.2.5.2 SAS 70 Type II
- •14.2.5.3 PCI PA DSS or Service Provider
- •14.2.5.4 Portability and Interoperability
- •14.2.5.5 Right to Audit
- •14.2.5.6 Service Level Agreements
- •14.2.6 Other Considerations
- •14.2.6.1 Disaster Recovery/Business Continuity
- •14.2.6.2 Governance Structure
- •14.2.6.3 Incident Response Plan
- •14.3 Conclusion
- •Bibliography
- •15.1.1 Location of Cloud Data and Applicable Laws
- •15.1.2 Data Concerns Within a European Context
- •15.1.3 Government Data
- •15.1.4 Trust
- •15.1.5 Interoperability and Standardization in Cloud Computing
- •15.1.6 Open Grid Forum’s (OGF) Production Grid Interoperability Working Group (PGI-WG) Charter
- •15.1.7.1 What will OCCI Provide?
- •15.1.7.2 Cloud Data Management Interface (CDMI)
- •15.1.7.3 How it Works
- •15.1.8 SDOs and their Involvement with Clouds
- •15.1.10 A Microsoft Cloud Interoperability Scenario
- •15.1.11 Opportunities for Public Authorities
- •15.1.12 Future Market Drivers and Challenges
- •15.1.13 Priorities Moving Forward
- •15.2 Conclusions
- •References
- •16.1 Introduction
- •16.2 Cloud Computing (‘The Cloud’)
- •16.3 Understanding Risks to Cloud Computing
- •16.3.1 Privacy Issues
- •16.3.2 Data Ownership and Content Disclosure Issues
- •16.3.3 Data Confidentiality
- •16.3.4 Data Location
- •16.3.5 Control Issues
- •16.3.6 Regulatory and Legislative Compliance
- •16.3.7 Forensic Evidence Issues
- •16.3.8 Auditing Issues
- •16.3.9 Business Continuity and Disaster Recovery Issues
- •16.3.10 Trust Issues
- •16.3.11 Security Policy Issues
- •16.3.12 Emerging Threats to Cloud Computing
- •16.4 Cloud Security Relationship Framework
- •16.4.1 Security Requirements in the Clouds
- •16.5 Conclusion
- •References
- •17.1 Introduction
- •17.1.1 What Is Security?
- •17.2 ISO 27002 Gap Analyses
- •17.2.1 Asset Management
- •17.2.2 Communications and Operations Management
- •17.2.4 Information Security Incident Management
- •17.2.5 Compliance
- •17.3 Security Recommendations
- •17.4 Case Studies
- •17.4.1 Private Cloud: Fortune 100 Company
- •17.4.2 Public Cloud: Amazon.com
- •17.5 Summary and Conclusion
- •References
- •18.1 Introduction
- •18.2 Decoupling Policy from Applications
- •18.2.1 Overlap of Concerns Between the PEP and PDP
- •18.2.2 Patterns for Binding PEPs to Services
- •18.2.3 Agents
- •18.2.4 Intermediaries
- •18.3 PEP Deployment Patterns in the Cloud
- •18.3.1 Software-as-a-Service Deployment
- •18.3.2 Platform-as-a-Service Deployment
- •18.3.3 Infrastructure-as-a-Service Deployment
- •18.3.4 Alternative Approaches to IaaS Policy Enforcement
- •18.3.5 Basic Web Application Security
- •18.3.6 VPN-Based Solutions
- •18.4 Challenges to Deploying PEPs in the Cloud
- •18.4.1 Performance Challenges in the Cloud
- •18.4.2 Strategies for Fault Tolerance
- •18.4.3 Strategies for Scalability
- •18.4.4 Clustering
- •18.4.5 Acceleration Strategies
- •18.4.5.1 Accelerating Message Processing
- •18.4.5.2 Acceleration of Cryptographic Operations
- •18.4.6 Transport Content Coding
- •18.4.7 Security Challenges in the Cloud
- •18.4.9 Binding PEPs and Applications
- •18.4.9.1 Intermediary Isolation
- •18.4.9.2 The Protected Application Stack
- •18.4.10 Authentication and Authorization
- •18.4.11 Clock Synchronization
- •18.4.12 Management Challenges in the Cloud
- •18.4.13 Audit, Logging, and Metrics
- •18.4.14 Repositories
- •18.4.15 Provisioning and Distribution
- •18.4.16 Policy Synchronization and Views
- •18.5 Conclusion
- •References
- •19.1 Introduction and Background
- •19.2 A Media Service Cloud for Traditional Broadcasting
- •19.2.1 Gridcast the PRISM Cloud 0.12
- •19.3 An On-demand Digital Media Cloud
- •19.4 PRISM Cloud Implementation
- •19.4.1 Cloud Resources
- •19.4.2 Cloud Service Deployment and Management
- •19.5 The PRISM Deployment
- •19.6 Summary
- •19.7 Content Note
- •References
- •20.1 Cloud Computing Reference Model
- •20.2 Cloud Economics
- •20.2.1 Economic Context
- •20.2.2 Economic Benefits
- •20.2.3 Economic Costs
- •20.2.5 The Economics of Green Clouds
- •20.3 Quality of Experience in the Cloud
- •20.4 Monetization Models in the Cloud
- •20.5 Charging in the Cloud
- •20.5.1 Existing Models of Charging
- •20.5.1.1 On-Demand IaaS Instances
- •20.5.1.2 Reserved IaaS Instances
- •20.5.1.3 PaaS Charging
- •20.5.1.4 Cloud Vendor Pricing Model
- •20.5.1.5 Interprovider Charging
- •20.6 Taxation in the Cloud
- •References
- •21.1 Introduction
- •21.2 Background
- •21.3 Experiment
- •21.3.1 Target Application: Value at Risk
- •21.3.2 Target Systems
- •21.3.2.1 Condor
- •21.3.2.2 Amazon EC2
- •21.3.2.3 Eucalyptus
- •21.3.3 Results
- •21.3.4 Job Completion
- •21.3.5 Cost
- •21.4 Conclusions and Future Work
- •References
- •Index
132 |
F. Pamieri and S. Pardi |
8.4 Architecture and Implementation Details
The solution to all the above-mentioned issues will result in a flexible and evolutionary architecture that supports cooperation between different entities (computing systems/clusters, storage, scientific instruments, etc.) within the cloud, based on a scalable framework for dynamic and transparent configuration and interconnection of multiple types of resources for high-performance cloud-computing services over globally distributed optical network systems. To achieve this, we have to abstract and encapsulate the available network resources into manageable and dynamically provisioned entities within the cloud in order to meet the complex demand patterns of the applications and to optimize the overall network utilization. More precisely, we need to conceive a new cloud architecture considering the network resources as key resources that can be managed and controlled like any other resource by the cloud middleware/distributed operating system services. In such architecture, the cloud system is modeled by using a three-layer hierarchical schema:
•The infrastructure layer, providing a virtualized interface to hardware resources, such as CPU, memory, connectivity/bandwidth, and storage, and aggregating and allocating them on a totally distributed basis
•The platform layer including the components that implement the cloud basic services and runtime environment, such as the cloud operating system kernel, a distributed file system (DFS), cloud input/output (I/O) facilities, computing and virtualization engine, network management, and interface modules
•The application layer hosting domain-specific application and realizing the cloud service abstraction through specific interfaces
The interfaces provided at the infrastructure layer make the platform layer almost totally independent from the underlying hardware resources, and thus ensure high scalability and flexibility benefits to the whole cloud architecture. Accordingly, the infrastructure layer can be implemented by using a public service such as Amazon EC2/S3 [1,2] or another private-owned infrastructure or solution such as a computing cluster or a grid.
Analogous to the operating system that manages the complexity of an individual machine, the COS handles the complexity at the platform layer and aggregates the resources available in all the data centers participating in the cloud. In particular, it runs applications on a highly unified, reliable, and efficient virtual infrastructure made up of distributed components, automatically managing them to support pre-defined service-level agreements (SLAs) in terms of availability, security, and performance assurance for the applications. It also dynamically moves the applications with the same service-level expectations across on-premise or off-premise sites within the clouds for the sake of highest operational efficiency.
A DFS platform provides a consistent view of the data seen by all the clients named in a hierarchical name space among multiple naming/directory servers, and ensures their distribution across the cloud to handle heavy loads and reliability in case of failures.

8 Enhanced Network Support for Scalable Computing Clouds |
133 |
The I/O subsystem provides data-exchange services in the same infrastructure or among different clouds by using several protocols and facilities. Such services are implemented within the network control logic that has the role of collective broker for network connectivity requirements, keeps track of the resources and interfaces available on the cloud, and copes with all the necessary network operations by hiding the complexity of the resource-specific allocation tasks. These functions are implemented in the cloud middleware platform by relying on information models responsible for capturing structures and relationships of the involved entities. To cope with the heterogeneity of the network infrastructure resources, we propose a new technology-independent network resource abstraction: the Traffic Engineered end-to-end virtual circuit that can be used for virtualconnection transport. Such virtual circuit mimics a direct point-to-point connection or pipe with specific bandwidth and QoS features. The network control logic handles each connectivity request; it then coordinates the setting up of the needed tunnels between the nodes on the cloud hosting the requesting applications. This schema guarantees access to dedicated circuits, which may be requested on-demand or by advance reservation to deliver more reliable and predictable network performance.
Finally, the user interface supports administrators and clients to monitor and manage the cloud platform and the applications running on it through specific userfriendly interfaces. It includes configuration, accounting, performance, and secu- rity-management facilities. In this domain, many open-source technologies can be considered. The web services technology is a good candidate to play a role in building such user interface, which makes the cloud easily accessible through the network by delivering desktop-like experience to the users (Fig. 8.1).
Fig. 8.1 The cloud-reference architecture
134 |
F. Pamieri and S. Pardi |
8.4.1 Traffic Management and Control Plane Facilities
In our proposed architectural framework, an application program running on a cloud has the view of a virtualized communication infrastructure unifying all the needed computational and storage resources into a common “virtual site” or “virtual network” abstraction, and should be able to dynamically request some specific service levels (bandwidth/QoS, protection, etc.) on it. The fulfilment of the above-mentioned requests triggers the on-demand construction of one or more dedicated point-to-point or multipoint “virtual” circuits or pseudo-wires between the cloud sites hosting the application’s runtime resources, and is accomplished co-operatively by the network devices on the end-to-end paths between these sites. The above-mentioned circuits can either be dedicated layer-2 channels, realizing the abstractions of a transport network behaving as a single virtual switching device, or traffic engineered paths with guaranteed bandwidth, delay, etc. All the involved network resources have to be defined in advance at the “virtual network” configuration time. Control-plane protocols define the procedures for handling such traffic engineering operations, i.e., immediate requests for connectivity at a guaranteed rate. The transparency and adaptability features of cloud infrastructures make support for these operations absolutely necessary in a suitable transport network, which may be a mesh of private or public shared networks, owned and managed by some co-operating service providers and/or enterprises. The underlying network must be as transparent as possible with respect to the cloud infrastructure, so that all the necessary network operations are almost totally hidden to the applications and/or Virtual Machines running on it. Traffic management in our model should work on a pure “peerbased” model based on MPLS/GMPLS [3,4] technology that introduces a circuitswitching paradigm on top of the basic IP packet-switching framework. We consider a network built on label switching routers (LSR), optical wavelength switches, and communication links that may be under the administrative control of several cooperating NSP, realizing a common transport infrastructure. The optical devices implement an intelligent all-optical core where packets are routed through the network without leaving the optical domain. The optical network and the surrounding IP networks are independent of each other, and an edge LSR interacts with its connected switching nodes only over a well-defined User-Network Interface (UNI). A subset of the routers are known to be ingress and egress points for the network traffic within the cloud and these are typically the customer edge (CE) devices directly attached to the NSP’s point-of-presence locations or Provider Edge (PE) devices. There are no requirements for CE devices in order to map the logical connections to the remote sites – they have to be configured as if they were connected to a single bridged network or local area network. Also, the NSP edge nodes and the optical switches within the core do not have any information related to the cloud, and only transfer the tagged packets or cross-connect optical ports/wavelengths from one LSR to another in a transparent way. The key idea in such architecture is to realize a strict separation between the network control and forwarding planes. The space of all possible forwarding options in a network domain is partitioned into “Forwarding Equivalence Classes” (FECs). The packets