
- •Cloud Computing
- •Foreword
- •Preface
- •Introduction
- •Expected Audience
- •Book Overview
- •Part 1: Cloud Base
- •Part 2: Cloud Seeding
- •Part 3: Cloud Breaks
- •Part 4: Cloud Feedback
- •Contents
- •1.1 Introduction
- •1.1.1 Cloud Services and Enabling Technologies
- •1.2 Virtualization Technology
- •1.2.1 Virtual Machines
- •1.2.2 Virtualization Platforms
- •1.2.3 Virtual Infrastructure Management
- •1.2.4 Cloud Infrastructure Manager
- •1.3 The MapReduce System
- •1.3.1 Hadoop MapReduce Overview
- •1.4 Web Services
- •1.4.1 RPC (Remote Procedure Call)
- •1.4.2 SOA (Service-Oriented Architecture)
- •1.4.3 REST (Representative State Transfer)
- •1.4.4 Mashup
- •1.4.5 Web Services in Practice
- •1.5 Conclusions
- •References
- •2.1 Introduction
- •2.2 Background and Related Work
- •2.3 Taxonomy of Cloud Computing
- •2.3.1 Cloud Architecture
- •2.3.1.1 Services and Modes of Cloud Computing
- •Software-as-a-Service (SaaS)
- •Platform-as-a-Service (PaaS)
- •Hardware-as-a-Service (HaaS)
- •Infrastructure-as-a-Service (IaaS)
- •2.3.2 Virtualization Management
- •2.3.3 Core Services
- •2.3.3.1 Discovery and Replication
- •2.3.3.2 Load Balancing
- •2.3.3.3 Resource Management
- •2.3.4 Data Governance
- •2.3.4.1 Interoperability
- •2.3.4.2 Data Migration
- •2.3.5 Management Services
- •2.3.5.1 Deployment and Configuration
- •2.3.5.2 Monitoring and Reporting
- •2.3.5.3 Service-Level Agreements (SLAs) Management
- •2.3.5.4 Metering and Billing
- •2.3.5.5 Provisioning
- •2.3.6 Security
- •2.3.6.1 Encryption/Decryption
- •2.3.6.2 Privacy and Federated Identity
- •2.3.6.3 Authorization and Authentication
- •2.3.7 Fault Tolerance
- •2.4 Classification and Comparison between Cloud Computing Ecosystems
- •2.5 Findings
- •2.5.2 Cloud Computing PaaS and SaaS Provider
- •2.5.3 Open Source Based Cloud Computing Services
- •2.6 Comments on Issues and Opportunities
- •2.7 Conclusions
- •References
- •3.1 Introduction
- •3.2 Scientific Workflows and e-Science
- •3.2.1 Scientific Workflows
- •3.2.2 Scientific Workflow Management Systems
- •3.2.3 Important Aspects of In Silico Experiments
- •3.3 A Taxonomy for Cloud Computing
- •3.3.1 Business Model
- •3.3.2 Privacy
- •3.3.3 Pricing
- •3.3.4 Architecture
- •3.3.5 Technology Infrastructure
- •3.3.6 Access
- •3.3.7 Standards
- •3.3.8 Orientation
- •3.5 Taxonomies for Cloud Computing
- •3.6 Conclusions and Final Remarks
- •References
- •4.1 Introduction
- •4.2 Cloud and Grid: A Comparison
- •4.2.1 A Retrospective View
- •4.2.2 Comparison from the Viewpoint of System
- •4.2.3 Comparison from the Viewpoint of Users
- •4.2.4 A Summary
- •4.3 Examining Cloud Computing from the CSCW Perspective
- •4.3.1 CSCW Findings
- •4.3.2 The Anatomy of Cloud Computing
- •4.3.2.1 Security and Privacy
- •4.3.2.2 Data and/or Vendor Lock-In
- •4.3.2.3 Service Availability/Reliability
- •4.4 Conclusions
- •References
- •5.1 Overview – Cloud Standards – What and Why?
- •5.2 Deep Dive: Interoperability Standards
- •5.2.1 Purpose, Expectations and Challenges
- •5.2.2 Initiatives – Focus, Sponsors and Status
- •5.2.3 Market Adoption
- •5.2.4 Gaps/Areas of Improvement
- •5.3 Deep Dive: Security Standards
- •5.3.1 Purpose, Expectations and Challenges
- •5.3.2 Initiatives – Focus, Sponsors and Status
- •5.3.3 Market Adoption
- •5.3.4 Gaps/Areas of Improvement
- •5.4 Deep Dive: Portability Standards
- •5.4.1 Purpose, Expectations and Challenges
- •5.4.2 Initiatives – Focus, Sponsors and Status
- •5.4.3 Market Adoption
- •5.4.4 Gaps/Areas of Improvement
- •5.5.1 Purpose, Expectations and Challenges
- •5.5.2 Initiatives – Focus, Sponsors and Status
- •5.5.3 Market Adoption
- •5.5.4 Gaps/Areas of Improvement
- •5.6 Deep Dive: Other Key Standards
- •5.6.1 Initiatives – Focus, Sponsors and Status
- •5.7 Closing Notes
- •References
- •6.1 Introduction and Motivation
- •6.2 Cloud@Home Overview
- •6.2.1 Issues, Challenges, and Open Problems
- •6.2.2 Basic Architecture
- •6.2.2.1 Software Environment
- •6.2.2.2 Software Infrastructure
- •6.2.2.3 Software Kernel
- •6.2.2.4 Firmware/Hardware
- •6.2.3 Application Scenarios
- •6.3 Cloud@Home Core Structure
- •6.3.1 Management Subsystem
- •6.3.2 Resource Subsystem
- •6.4 Conclusions
- •References
- •7.1 Introduction
- •7.2 MapReduce
- •7.3 P2P-MapReduce
- •7.3.1 Architecture
- •7.3.2 Implementation
- •7.3.2.1 Basic Mechanisms
- •Resource Discovery
- •Network Maintenance
- •Job Submission and Failure Recovery
- •7.3.2.2 State Diagram and Software Modules
- •7.3.3 Evaluation
- •7.4 Conclusions
- •References
- •8.1 Introduction
- •8.2 The Cloud Evolution
- •8.3 Improved Network Support for Cloud Computing
- •8.3.1 Why the Internet is Not Enough?
- •8.3.2 Transparent Optical Networks for Cloud Applications: The Dedicated Bandwidth Paradigm
- •8.4 Architecture and Implementation Details
- •8.4.1 Traffic Management and Control Plane Facilities
- •8.4.2 Service Plane and Interfaces
- •8.4.2.1 Providing Network Services to Cloud-Computing Infrastructures
- •8.4.2.2 The Cloud Operating System–Network Interface
- •8.5.1 The Prototype Details
- •8.5.1.1 The Underlying Network Infrastructure
- •8.5.1.2 The Prototype Cloud Network Control Logic and its Services
- •8.5.2 Performance Evaluation and Results Discussion
- •8.6 Related Work
- •8.7 Conclusions
- •References
- •9.1 Introduction
- •9.2 Overview of YML
- •9.3 Design and Implementation of YML-PC
- •9.3.1 Concept Stack of Cloud Platform
- •9.3.2 Design of YML-PC
- •9.3.3 Core Design and Implementation of YML-PC
- •9.4 Primary Experiments on YML-PC
- •9.4.1 YML-PC Can Be Scaled Up Very Easily
- •9.4.2 Data Persistence in YML-PC
- •9.4.3 Schedule Mechanism in YML-PC
- •9.5 Conclusion and Future Work
- •References
- •10.1 Introduction
- •10.2 Related Work
- •10.2.1 General View of Cloud Computing frameworks
- •10.2.2 Cloud Computing Middleware
- •10.3 Deploying Applications in the Cloud
- •10.3.1 Benchmarking the Cloud
- •10.3.2 The ProActive GCM Deployment
- •10.3.3 Technical Solutions for Deployment over Heterogeneous Infrastructures
- •10.3.3.1 Virtual Private Network (VPN)
- •10.3.3.2 Amazon Virtual Private Cloud (VPC)
- •10.3.3.3 Message Forwarding and Tunneling
- •10.3.4 Conclusion and Motivation for Mixing
- •10.4 Moving HPC Applications from Grids to Clouds
- •10.4.1 HPC on Heterogeneous Multi-Domain Platforms
- •10.4.2 The Hierarchical SPMD Concept and Multi-level Partitioning of Numerical Meshes
- •10.4.3 The GCM/ProActive-Based Lightweight Framework
- •10.4.4 Performance Evaluation
- •10.5 Dynamic Mixing of Clusters, Grids, and Clouds
- •10.5.1 The ProActive Resource Manager
- •10.5.2 Cloud Bursting: Managing Spike Demand
- •10.5.3 Cloud Seeding: Dealing with Heterogeneous Hardware and Private Data
- •10.6 Conclusion
- •References
- •11.1 Introduction
- •11.2 Background
- •11.2.1 ASKALON
- •11.2.2 Cloud Computing
- •11.3 Resource Management Architecture
- •11.3.1 Cloud Management
- •11.3.2 Image Catalog
- •11.3.3 Security
- •11.4 Evaluation
- •11.5 Related Work
- •11.6 Conclusions and Future Work
- •References
- •12.1 Introduction
- •12.2 Layered Peer-to-Peer Cloud Provisioning Architecture
- •12.4.1 Distributed Hash Tables
- •12.4.2 Designing Complex Services over DHTs
- •12.5 Cloud Peer Software Fabric: Design and Implementation
- •12.5.1 Overlay Construction
- •12.5.2 Multidimensional Query Indexing
- •12.5.3 Multidimensional Query Routing
- •12.6 Experiments and Evaluation
- •12.6.1 Cloud Peer Details
- •12.6.3 Test Application
- •12.6.4 Deployment of Test Services on Amazon EC2 Platform
- •12.7 Results and Discussions
- •12.8 Conclusions and Path Forward
- •References
- •13.1 Introduction
- •13.2 High-Throughput Science with the Nimrod Tools
- •13.2.1 The Nimrod Tool Family
- •13.2.2 Nimrod and the Grid
- •13.2.3 Scheduling in Nimrod
- •13.3 Extensions to Support Amazon’s Elastic Compute Cloud
- •13.3.1 The Nimrod Architecture
- •13.3.2 The EC2 Actuator
- •13.3.3 Additions to the Schedulers
- •13.4.1 Introduction and Background
- •13.4.2 Computational Requirements
- •13.4.3 The Experiment
- •13.4.4 Computational and Economic Results
- •13.4.5 Scientific Results
- •13.5 Conclusions
- •References
- •14.1 Using the Cloud
- •14.1.1 Overview
- •14.1.2 Background
- •14.1.3 Requirements and Obligations
- •14.1.3.1 Regional Laws
- •14.1.3.2 Industry Regulations
- •14.2 Cloud Compliance
- •14.2.1 Information Security Organization
- •14.2.2 Data Classification
- •14.2.2.1 Classifying Data and Systems
- •14.2.2.2 Specific Type of Data of Concern
- •14.2.2.3 Labeling
- •14.2.3 Access Control and Connectivity
- •14.2.3.1 Authentication and Authorization
- •14.2.3.2 Accounting and Auditing
- •14.2.3.3 Encrypting Data in Motion
- •14.2.3.4 Encrypting Data at Rest
- •14.2.4 Risk Assessments
- •14.2.4.1 Threat and Risk Assessments
- •14.2.4.2 Business Impact Assessments
- •14.2.4.3 Privacy Impact Assessments
- •14.2.5 Due Diligence and Provider Contract Requirements
- •14.2.5.1 ISO Certification
- •14.2.5.2 SAS 70 Type II
- •14.2.5.3 PCI PA DSS or Service Provider
- •14.2.5.4 Portability and Interoperability
- •14.2.5.5 Right to Audit
- •14.2.5.6 Service Level Agreements
- •14.2.6 Other Considerations
- •14.2.6.1 Disaster Recovery/Business Continuity
- •14.2.6.2 Governance Structure
- •14.2.6.3 Incident Response Plan
- •14.3 Conclusion
- •Bibliography
- •15.1.1 Location of Cloud Data and Applicable Laws
- •15.1.2 Data Concerns Within a European Context
- •15.1.3 Government Data
- •15.1.4 Trust
- •15.1.5 Interoperability and Standardization in Cloud Computing
- •15.1.6 Open Grid Forum’s (OGF) Production Grid Interoperability Working Group (PGI-WG) Charter
- •15.1.7.1 What will OCCI Provide?
- •15.1.7.2 Cloud Data Management Interface (CDMI)
- •15.1.7.3 How it Works
- •15.1.8 SDOs and their Involvement with Clouds
- •15.1.10 A Microsoft Cloud Interoperability Scenario
- •15.1.11 Opportunities for Public Authorities
- •15.1.12 Future Market Drivers and Challenges
- •15.1.13 Priorities Moving Forward
- •15.2 Conclusions
- •References
- •16.1 Introduction
- •16.2 Cloud Computing (‘The Cloud’)
- •16.3 Understanding Risks to Cloud Computing
- •16.3.1 Privacy Issues
- •16.3.2 Data Ownership and Content Disclosure Issues
- •16.3.3 Data Confidentiality
- •16.3.4 Data Location
- •16.3.5 Control Issues
- •16.3.6 Regulatory and Legislative Compliance
- •16.3.7 Forensic Evidence Issues
- •16.3.8 Auditing Issues
- •16.3.9 Business Continuity and Disaster Recovery Issues
- •16.3.10 Trust Issues
- •16.3.11 Security Policy Issues
- •16.3.12 Emerging Threats to Cloud Computing
- •16.4 Cloud Security Relationship Framework
- •16.4.1 Security Requirements in the Clouds
- •16.5 Conclusion
- •References
- •17.1 Introduction
- •17.1.1 What Is Security?
- •17.2 ISO 27002 Gap Analyses
- •17.2.1 Asset Management
- •17.2.2 Communications and Operations Management
- •17.2.4 Information Security Incident Management
- •17.2.5 Compliance
- •17.3 Security Recommendations
- •17.4 Case Studies
- •17.4.1 Private Cloud: Fortune 100 Company
- •17.4.2 Public Cloud: Amazon.com
- •17.5 Summary and Conclusion
- •References
- •18.1 Introduction
- •18.2 Decoupling Policy from Applications
- •18.2.1 Overlap of Concerns Between the PEP and PDP
- •18.2.2 Patterns for Binding PEPs to Services
- •18.2.3 Agents
- •18.2.4 Intermediaries
- •18.3 PEP Deployment Patterns in the Cloud
- •18.3.1 Software-as-a-Service Deployment
- •18.3.2 Platform-as-a-Service Deployment
- •18.3.3 Infrastructure-as-a-Service Deployment
- •18.3.4 Alternative Approaches to IaaS Policy Enforcement
- •18.3.5 Basic Web Application Security
- •18.3.6 VPN-Based Solutions
- •18.4 Challenges to Deploying PEPs in the Cloud
- •18.4.1 Performance Challenges in the Cloud
- •18.4.2 Strategies for Fault Tolerance
- •18.4.3 Strategies for Scalability
- •18.4.4 Clustering
- •18.4.5 Acceleration Strategies
- •18.4.5.1 Accelerating Message Processing
- •18.4.5.2 Acceleration of Cryptographic Operations
- •18.4.6 Transport Content Coding
- •18.4.7 Security Challenges in the Cloud
- •18.4.9 Binding PEPs and Applications
- •18.4.9.1 Intermediary Isolation
- •18.4.9.2 The Protected Application Stack
- •18.4.10 Authentication and Authorization
- •18.4.11 Clock Synchronization
- •18.4.12 Management Challenges in the Cloud
- •18.4.13 Audit, Logging, and Metrics
- •18.4.14 Repositories
- •18.4.15 Provisioning and Distribution
- •18.4.16 Policy Synchronization and Views
- •18.5 Conclusion
- •References
- •19.1 Introduction and Background
- •19.2 A Media Service Cloud for Traditional Broadcasting
- •19.2.1 Gridcast the PRISM Cloud 0.12
- •19.3 An On-demand Digital Media Cloud
- •19.4 PRISM Cloud Implementation
- •19.4.1 Cloud Resources
- •19.4.2 Cloud Service Deployment and Management
- •19.5 The PRISM Deployment
- •19.6 Summary
- •19.7 Content Note
- •References
- •20.1 Cloud Computing Reference Model
- •20.2 Cloud Economics
- •20.2.1 Economic Context
- •20.2.2 Economic Benefits
- •20.2.3 Economic Costs
- •20.2.5 The Economics of Green Clouds
- •20.3 Quality of Experience in the Cloud
- •20.4 Monetization Models in the Cloud
- •20.5 Charging in the Cloud
- •20.5.1 Existing Models of Charging
- •20.5.1.1 On-Demand IaaS Instances
- •20.5.1.2 Reserved IaaS Instances
- •20.5.1.3 PaaS Charging
- •20.5.1.4 Cloud Vendor Pricing Model
- •20.5.1.5 Interprovider Charging
- •20.6 Taxation in the Cloud
- •References
- •21.1 Introduction
- •21.2 Background
- •21.3 Experiment
- •21.3.1 Target Application: Value at Risk
- •21.3.2 Target Systems
- •21.3.2.1 Condor
- •21.3.2.2 Amazon EC2
- •21.3.2.3 Eucalyptus
- •21.3.3 Results
- •21.3.4 Job Completion
- •21.3.5 Cost
- •21.4 Conclusions and Future Work
- •References
- •Index
Preface |
xiii |
Chapter 8 introduces a novel network-centric Cloud architecture that provides enhanced end-to-end connectivity services. The framework facilitates vertical and horizontal communication integration of Cloud applications and the authors demonstrate its usefulness in decoupling connectivity from the underlying network implementations.
Chapter 9 presents a new workflow-based framework called YPL-PC that sup- ports the development of (private) scientific Clouds. The authors base their work on the YML workflow programming paradigm and show how their framework can effectively integrate dedicated and volunteer computing resources to support largescale scientific applications.
Chapter 10 discusses the benefits of mixing Clouds with more traditional computing platforms. It focuses on the design of a new high-level framework that sup- ports the smooth transition of an application from a cluster or Grid to a Cloud.
Chapter 11 describes a novel mechanism for extending a Grid computing envi- ronment to use on-demand Cloud resources in order to achieve better performance.
The authors achieve this by modifying the Grid resource management architecture, and through experimentation demonstrate the performance gains of their framework in workflows with large data sets.
Chapter 12 presents a new peer-to-peer Cloud architecture called Cloud Peer. The system creates and manages an overlay network of virtual machines and the authors demonstrate how it supports load balancing and scalable resource discovery.
Chapter 13 discusses the applicability of Cloud computing for high-throughput scientific applications. It shows that the Nimrod/G toolkit can handle both volun- teer resources and commercial services. Through a case study, the authors conclude that an appropriate mixture of Grid and Cloud computing provides an ideal plat- form for high-performance scientific computations.
Part 3: Cloud Breaks
This section covers a range of challenging issues associated to Cloud computing that, if not addressed properly, may limit adoption. It includes chapters that discuss legal issues, security and limitations. Specifically, the questions here relate to how data is protected in such environments to account for privacy, confidentiality, and so on, and what legislative and regulatory challenges are faced.
Chapter 14 provides an overview of a wide spectrum of legislation and regulations applicable to Cloud computing. The authors present a detailed analysis of the considerations that potential Cloud users should make in order to protect their processes and data.
Chapter 15 discusses interoperability issues and open development frameworks for Cloud computing. It presents current standardisation efforts and identifies future key challenges in data confidentiality in particular.
Chapter 16 discusses security and risk issues related to Cloud computing, including privacy, trust and data control. The authors use this analysis to propose a
xiv |
Preface |
new information asset classification model to assist Cloud users when choosing amongst Cloud delivery and deployment models.
Chapter 17 focuses on the security controls that need to be deployed in order to increase the adoption of Cloud computing. This discussion leads to a set of recommendations on how various security layers can be incorporated in typical private or public Cloud provisions.
Part 4: Cloud Feedback
This section aims to argue a business case for Cloud computing by debating the impact of Clouds. Can Clouds be the basis for deploying successful digital economies? Are there any lessons learned from specific case studies involving the use of Clouds for business applications?
Chapter 18 assesses frameworks for the distribution and enforcement of policies in Cloud architectures. The authors explore the use of the Service-Oriented Architecture (SOA) Policy Enforcement Point (PEP) as a policy portal and show that this can be an effective security model for Cloud-based services.
Chapter 19 describes in detail the PeRvasive Infrastructure of Services for Media (PRISM) project that provides a Cloud-based media infrastructure to support network access to BBC content. The deployment of this system is discussed, and it is shown that the system is capable of handling petabytes of data for on-demand viewing.
Chapter 20 discusses the economic forces and business drivers affecting the adoption of Cloud computing. It provides a detailed analysis of the costs and benefits of using Clouds as well as the overall quality of experience of Cloud end-users and its link to Service-Level Agreements (SLAs).
Chapter 21 discusses the challenges that would be entailed in constructing a price comparison service for Cloud resources. Service-Level Agreements (SLAs) would be a key component in such a service and experiments are presented for costing applications on a local Grid and a public (Amazon EC2) and private
(Eucalyptus) Cloud.
Acknowledgements The editors are grateful to the peer-review panel for supporting this book including, in no particular order, Anand Govindarajan, Bhaskar Prasad Rimal, Bin Li, Blair Bethwaite, Brian Amedro, Cyril Onwubiko, David Abramson, Hai Jin, James P. Durbano, Fabrice Huet, Francesco Palmieri, Ian Lumb, Jinlei Jiang, Kevin Mcdonald, Lakshmanan G, Rajiv Ranjan, Scott Morrison, and Terence Harmer. The editors are deeply apologetic to anyone whom they have forgotten.
The editors also wish to thank the Springer’s editorial team for their strong and continuous support throughout the development of this book.
University of Derby, UK |
Professor Nick Antonopoulos |
University of Surrey, UK |
Dr Lee Gillam |
Winter 2010 |
|