
- •Cloud Computing
- •Foreword
- •Preface
- •Introduction
- •Expected Audience
- •Book Overview
- •Part 1: Cloud Base
- •Part 2: Cloud Seeding
- •Part 3: Cloud Breaks
- •Part 4: Cloud Feedback
- •Contents
- •1.1 Introduction
- •1.1.1 Cloud Services and Enabling Technologies
- •1.2 Virtualization Technology
- •1.2.1 Virtual Machines
- •1.2.2 Virtualization Platforms
- •1.2.3 Virtual Infrastructure Management
- •1.2.4 Cloud Infrastructure Manager
- •1.3 The MapReduce System
- •1.3.1 Hadoop MapReduce Overview
- •1.4 Web Services
- •1.4.1 RPC (Remote Procedure Call)
- •1.4.2 SOA (Service-Oriented Architecture)
- •1.4.3 REST (Representative State Transfer)
- •1.4.4 Mashup
- •1.4.5 Web Services in Practice
- •1.5 Conclusions
- •References
- •2.1 Introduction
- •2.2 Background and Related Work
- •2.3 Taxonomy of Cloud Computing
- •2.3.1 Cloud Architecture
- •2.3.1.1 Services and Modes of Cloud Computing
- •Software-as-a-Service (SaaS)
- •Platform-as-a-Service (PaaS)
- •Hardware-as-a-Service (HaaS)
- •Infrastructure-as-a-Service (IaaS)
- •2.3.2 Virtualization Management
- •2.3.3 Core Services
- •2.3.3.1 Discovery and Replication
- •2.3.3.2 Load Balancing
- •2.3.3.3 Resource Management
- •2.3.4 Data Governance
- •2.3.4.1 Interoperability
- •2.3.4.2 Data Migration
- •2.3.5 Management Services
- •2.3.5.1 Deployment and Configuration
- •2.3.5.2 Monitoring and Reporting
- •2.3.5.3 Service-Level Agreements (SLAs) Management
- •2.3.5.4 Metering and Billing
- •2.3.5.5 Provisioning
- •2.3.6 Security
- •2.3.6.1 Encryption/Decryption
- •2.3.6.2 Privacy and Federated Identity
- •2.3.6.3 Authorization and Authentication
- •2.3.7 Fault Tolerance
- •2.4 Classification and Comparison between Cloud Computing Ecosystems
- •2.5 Findings
- •2.5.2 Cloud Computing PaaS and SaaS Provider
- •2.5.3 Open Source Based Cloud Computing Services
- •2.6 Comments on Issues and Opportunities
- •2.7 Conclusions
- •References
- •3.1 Introduction
- •3.2 Scientific Workflows and e-Science
- •3.2.1 Scientific Workflows
- •3.2.2 Scientific Workflow Management Systems
- •3.2.3 Important Aspects of In Silico Experiments
- •3.3 A Taxonomy for Cloud Computing
- •3.3.1 Business Model
- •3.3.2 Privacy
- •3.3.3 Pricing
- •3.3.4 Architecture
- •3.3.5 Technology Infrastructure
- •3.3.6 Access
- •3.3.7 Standards
- •3.3.8 Orientation
- •3.5 Taxonomies for Cloud Computing
- •3.6 Conclusions and Final Remarks
- •References
- •4.1 Introduction
- •4.2 Cloud and Grid: A Comparison
- •4.2.1 A Retrospective View
- •4.2.2 Comparison from the Viewpoint of System
- •4.2.3 Comparison from the Viewpoint of Users
- •4.2.4 A Summary
- •4.3 Examining Cloud Computing from the CSCW Perspective
- •4.3.1 CSCW Findings
- •4.3.2 The Anatomy of Cloud Computing
- •4.3.2.1 Security and Privacy
- •4.3.2.2 Data and/or Vendor Lock-In
- •4.3.2.3 Service Availability/Reliability
- •4.4 Conclusions
- •References
- •5.1 Overview – Cloud Standards – What and Why?
- •5.2 Deep Dive: Interoperability Standards
- •5.2.1 Purpose, Expectations and Challenges
- •5.2.2 Initiatives – Focus, Sponsors and Status
- •5.2.3 Market Adoption
- •5.2.4 Gaps/Areas of Improvement
- •5.3 Deep Dive: Security Standards
- •5.3.1 Purpose, Expectations and Challenges
- •5.3.2 Initiatives – Focus, Sponsors and Status
- •5.3.3 Market Adoption
- •5.3.4 Gaps/Areas of Improvement
- •5.4 Deep Dive: Portability Standards
- •5.4.1 Purpose, Expectations and Challenges
- •5.4.2 Initiatives – Focus, Sponsors and Status
- •5.4.3 Market Adoption
- •5.4.4 Gaps/Areas of Improvement
- •5.5.1 Purpose, Expectations and Challenges
- •5.5.2 Initiatives – Focus, Sponsors and Status
- •5.5.3 Market Adoption
- •5.5.4 Gaps/Areas of Improvement
- •5.6 Deep Dive: Other Key Standards
- •5.6.1 Initiatives – Focus, Sponsors and Status
- •5.7 Closing Notes
- •References
- •6.1 Introduction and Motivation
- •6.2 Cloud@Home Overview
- •6.2.1 Issues, Challenges, and Open Problems
- •6.2.2 Basic Architecture
- •6.2.2.1 Software Environment
- •6.2.2.2 Software Infrastructure
- •6.2.2.3 Software Kernel
- •6.2.2.4 Firmware/Hardware
- •6.2.3 Application Scenarios
- •6.3 Cloud@Home Core Structure
- •6.3.1 Management Subsystem
- •6.3.2 Resource Subsystem
- •6.4 Conclusions
- •References
- •7.1 Introduction
- •7.2 MapReduce
- •7.3 P2P-MapReduce
- •7.3.1 Architecture
- •7.3.2 Implementation
- •7.3.2.1 Basic Mechanisms
- •Resource Discovery
- •Network Maintenance
- •Job Submission and Failure Recovery
- •7.3.2.2 State Diagram and Software Modules
- •7.3.3 Evaluation
- •7.4 Conclusions
- •References
- •8.1 Introduction
- •8.2 The Cloud Evolution
- •8.3 Improved Network Support for Cloud Computing
- •8.3.1 Why the Internet is Not Enough?
- •8.3.2 Transparent Optical Networks for Cloud Applications: The Dedicated Bandwidth Paradigm
- •8.4 Architecture and Implementation Details
- •8.4.1 Traffic Management and Control Plane Facilities
- •8.4.2 Service Plane and Interfaces
- •8.4.2.1 Providing Network Services to Cloud-Computing Infrastructures
- •8.4.2.2 The Cloud Operating System–Network Interface
- •8.5.1 The Prototype Details
- •8.5.1.1 The Underlying Network Infrastructure
- •8.5.1.2 The Prototype Cloud Network Control Logic and its Services
- •8.5.2 Performance Evaluation and Results Discussion
- •8.6 Related Work
- •8.7 Conclusions
- •References
- •9.1 Introduction
- •9.2 Overview of YML
- •9.3 Design and Implementation of YML-PC
- •9.3.1 Concept Stack of Cloud Platform
- •9.3.2 Design of YML-PC
- •9.3.3 Core Design and Implementation of YML-PC
- •9.4 Primary Experiments on YML-PC
- •9.4.1 YML-PC Can Be Scaled Up Very Easily
- •9.4.2 Data Persistence in YML-PC
- •9.4.3 Schedule Mechanism in YML-PC
- •9.5 Conclusion and Future Work
- •References
- •10.1 Introduction
- •10.2 Related Work
- •10.2.1 General View of Cloud Computing frameworks
- •10.2.2 Cloud Computing Middleware
- •10.3 Deploying Applications in the Cloud
- •10.3.1 Benchmarking the Cloud
- •10.3.2 The ProActive GCM Deployment
- •10.3.3 Technical Solutions for Deployment over Heterogeneous Infrastructures
- •10.3.3.1 Virtual Private Network (VPN)
- •10.3.3.2 Amazon Virtual Private Cloud (VPC)
- •10.3.3.3 Message Forwarding and Tunneling
- •10.3.4 Conclusion and Motivation for Mixing
- •10.4 Moving HPC Applications from Grids to Clouds
- •10.4.1 HPC on Heterogeneous Multi-Domain Platforms
- •10.4.2 The Hierarchical SPMD Concept and Multi-level Partitioning of Numerical Meshes
- •10.4.3 The GCM/ProActive-Based Lightweight Framework
- •10.4.4 Performance Evaluation
- •10.5 Dynamic Mixing of Clusters, Grids, and Clouds
- •10.5.1 The ProActive Resource Manager
- •10.5.2 Cloud Bursting: Managing Spike Demand
- •10.5.3 Cloud Seeding: Dealing with Heterogeneous Hardware and Private Data
- •10.6 Conclusion
- •References
- •11.1 Introduction
- •11.2 Background
- •11.2.1 ASKALON
- •11.2.2 Cloud Computing
- •11.3 Resource Management Architecture
- •11.3.1 Cloud Management
- •11.3.2 Image Catalog
- •11.3.3 Security
- •11.4 Evaluation
- •11.5 Related Work
- •11.6 Conclusions and Future Work
- •References
- •12.1 Introduction
- •12.2 Layered Peer-to-Peer Cloud Provisioning Architecture
- •12.4.1 Distributed Hash Tables
- •12.4.2 Designing Complex Services over DHTs
- •12.5 Cloud Peer Software Fabric: Design and Implementation
- •12.5.1 Overlay Construction
- •12.5.2 Multidimensional Query Indexing
- •12.5.3 Multidimensional Query Routing
- •12.6 Experiments and Evaluation
- •12.6.1 Cloud Peer Details
- •12.6.3 Test Application
- •12.6.4 Deployment of Test Services on Amazon EC2 Platform
- •12.7 Results and Discussions
- •12.8 Conclusions and Path Forward
- •References
- •13.1 Introduction
- •13.2 High-Throughput Science with the Nimrod Tools
- •13.2.1 The Nimrod Tool Family
- •13.2.2 Nimrod and the Grid
- •13.2.3 Scheduling in Nimrod
- •13.3 Extensions to Support Amazon’s Elastic Compute Cloud
- •13.3.1 The Nimrod Architecture
- •13.3.2 The EC2 Actuator
- •13.3.3 Additions to the Schedulers
- •13.4.1 Introduction and Background
- •13.4.2 Computational Requirements
- •13.4.3 The Experiment
- •13.4.4 Computational and Economic Results
- •13.4.5 Scientific Results
- •13.5 Conclusions
- •References
- •14.1 Using the Cloud
- •14.1.1 Overview
- •14.1.2 Background
- •14.1.3 Requirements and Obligations
- •14.1.3.1 Regional Laws
- •14.1.3.2 Industry Regulations
- •14.2 Cloud Compliance
- •14.2.1 Information Security Organization
- •14.2.2 Data Classification
- •14.2.2.1 Classifying Data and Systems
- •14.2.2.2 Specific Type of Data of Concern
- •14.2.2.3 Labeling
- •14.2.3 Access Control and Connectivity
- •14.2.3.1 Authentication and Authorization
- •14.2.3.2 Accounting and Auditing
- •14.2.3.3 Encrypting Data in Motion
- •14.2.3.4 Encrypting Data at Rest
- •14.2.4 Risk Assessments
- •14.2.4.1 Threat and Risk Assessments
- •14.2.4.2 Business Impact Assessments
- •14.2.4.3 Privacy Impact Assessments
- •14.2.5 Due Diligence and Provider Contract Requirements
- •14.2.5.1 ISO Certification
- •14.2.5.2 SAS 70 Type II
- •14.2.5.3 PCI PA DSS or Service Provider
- •14.2.5.4 Portability and Interoperability
- •14.2.5.5 Right to Audit
- •14.2.5.6 Service Level Agreements
- •14.2.6 Other Considerations
- •14.2.6.1 Disaster Recovery/Business Continuity
- •14.2.6.2 Governance Structure
- •14.2.6.3 Incident Response Plan
- •14.3 Conclusion
- •Bibliography
- •15.1.1 Location of Cloud Data and Applicable Laws
- •15.1.2 Data Concerns Within a European Context
- •15.1.3 Government Data
- •15.1.4 Trust
- •15.1.5 Interoperability and Standardization in Cloud Computing
- •15.1.6 Open Grid Forum’s (OGF) Production Grid Interoperability Working Group (PGI-WG) Charter
- •15.1.7.1 What will OCCI Provide?
- •15.1.7.2 Cloud Data Management Interface (CDMI)
- •15.1.7.3 How it Works
- •15.1.8 SDOs and their Involvement with Clouds
- •15.1.10 A Microsoft Cloud Interoperability Scenario
- •15.1.11 Opportunities for Public Authorities
- •15.1.12 Future Market Drivers and Challenges
- •15.1.13 Priorities Moving Forward
- •15.2 Conclusions
- •References
- •16.1 Introduction
- •16.2 Cloud Computing (‘The Cloud’)
- •16.3 Understanding Risks to Cloud Computing
- •16.3.1 Privacy Issues
- •16.3.2 Data Ownership and Content Disclosure Issues
- •16.3.3 Data Confidentiality
- •16.3.4 Data Location
- •16.3.5 Control Issues
- •16.3.6 Regulatory and Legislative Compliance
- •16.3.7 Forensic Evidence Issues
- •16.3.8 Auditing Issues
- •16.3.9 Business Continuity and Disaster Recovery Issues
- •16.3.10 Trust Issues
- •16.3.11 Security Policy Issues
- •16.3.12 Emerging Threats to Cloud Computing
- •16.4 Cloud Security Relationship Framework
- •16.4.1 Security Requirements in the Clouds
- •16.5 Conclusion
- •References
- •17.1 Introduction
- •17.1.1 What Is Security?
- •17.2 ISO 27002 Gap Analyses
- •17.2.1 Asset Management
- •17.2.2 Communications and Operations Management
- •17.2.4 Information Security Incident Management
- •17.2.5 Compliance
- •17.3 Security Recommendations
- •17.4 Case Studies
- •17.4.1 Private Cloud: Fortune 100 Company
- •17.4.2 Public Cloud: Amazon.com
- •17.5 Summary and Conclusion
- •References
- •18.1 Introduction
- •18.2 Decoupling Policy from Applications
- •18.2.1 Overlap of Concerns Between the PEP and PDP
- •18.2.2 Patterns for Binding PEPs to Services
- •18.2.3 Agents
- •18.2.4 Intermediaries
- •18.3 PEP Deployment Patterns in the Cloud
- •18.3.1 Software-as-a-Service Deployment
- •18.3.2 Platform-as-a-Service Deployment
- •18.3.3 Infrastructure-as-a-Service Deployment
- •18.3.4 Alternative Approaches to IaaS Policy Enforcement
- •18.3.5 Basic Web Application Security
- •18.3.6 VPN-Based Solutions
- •18.4 Challenges to Deploying PEPs in the Cloud
- •18.4.1 Performance Challenges in the Cloud
- •18.4.2 Strategies for Fault Tolerance
- •18.4.3 Strategies for Scalability
- •18.4.4 Clustering
- •18.4.5 Acceleration Strategies
- •18.4.5.1 Accelerating Message Processing
- •18.4.5.2 Acceleration of Cryptographic Operations
- •18.4.6 Transport Content Coding
- •18.4.7 Security Challenges in the Cloud
- •18.4.9 Binding PEPs and Applications
- •18.4.9.1 Intermediary Isolation
- •18.4.9.2 The Protected Application Stack
- •18.4.10 Authentication and Authorization
- •18.4.11 Clock Synchronization
- •18.4.12 Management Challenges in the Cloud
- •18.4.13 Audit, Logging, and Metrics
- •18.4.14 Repositories
- •18.4.15 Provisioning and Distribution
- •18.4.16 Policy Synchronization and Views
- •18.5 Conclusion
- •References
- •19.1 Introduction and Background
- •19.2 A Media Service Cloud for Traditional Broadcasting
- •19.2.1 Gridcast the PRISM Cloud 0.12
- •19.3 An On-demand Digital Media Cloud
- •19.4 PRISM Cloud Implementation
- •19.4.1 Cloud Resources
- •19.4.2 Cloud Service Deployment and Management
- •19.5 The PRISM Deployment
- •19.6 Summary
- •19.7 Content Note
- •References
- •20.1 Cloud Computing Reference Model
- •20.2 Cloud Economics
- •20.2.1 Economic Context
- •20.2.2 Economic Benefits
- •20.2.3 Economic Costs
- •20.2.5 The Economics of Green Clouds
- •20.3 Quality of Experience in the Cloud
- •20.4 Monetization Models in the Cloud
- •20.5 Charging in the Cloud
- •20.5.1 Existing Models of Charging
- •20.5.1.1 On-Demand IaaS Instances
- •20.5.1.2 Reserved IaaS Instances
- •20.5.1.3 PaaS Charging
- •20.5.1.4 Cloud Vendor Pricing Model
- •20.5.1.5 Interprovider Charging
- •20.6 Taxation in the Cloud
- •References
- •21.1 Introduction
- •21.2 Background
- •21.3 Experiment
- •21.3.1 Target Application: Value at Risk
- •21.3.2 Target Systems
- •21.3.2.1 Condor
- •21.3.2.2 Amazon EC2
- •21.3.2.3 Eucalyptus
- •21.3.3 Results
- •21.3.4 Job Completion
- •21.3.5 Cost
- •21.4 Conclusions and Future Work
- •References
- •Index
2 A Taxonomy, Survey, and Issues of Cloud Computing Ecosystems |
41 |
user level. Amazon S3 lacks in access control that supports delegation and auditing, and makes implicit trust assumptions between S3 and clients [52]. Amazon’s work [13] towards Statement on Auditing Standards No.70: Service Organizations, Type II (SAS70 type II) certification may be helpful for those concerned with widely varying levels of security competency. Generally, this is better than no certification whatsoever. Some of the important security aspects of cloud-centric computing are secure cloud resource virtualization, security for cloud programming models, binary analysis of software for remote attestation and cloud protection, cloud-cen- tric regulatory compliance issues, and mechanisms and foundations of cloud-centric threat models that need to be considered for future cloud work.
2.5.2 Cloud Computing PaaS and SaaS Provider
Google App Engine (GAE) provides a useful basis for people and companies to make web applications from scratch without needing to worry about infrastructure. GAE provides for automatic scaling and load balancing. This alone will be worth while for a certain class of application developers. GAE has some clear advantages and lowers the barriers to entry for startups and independent developers. The potential problem is lock-in that creates risk and more cost for long term. The lock-in is caused by custom APIs such as BigTable, Python launcher, accounts and transparent scaling for both Python scripts and database. Google App Engine uses master/ slave replication between data centers. They chose this approach to provide low latency writes, data center failure survival, and strong consistency guarantees.
GigaSpaces use an In-Memory Data-Grid (IMDG) technique to manage state data in a database, which bridges the bottleneck of scalability. It provides all the basic features of a high-end Data Grid as well as unique features, such as continuous query and seamless integration with external data sources, and makes it extremely easy to deploy, modify, and ensure high availability for applications running on Amazon EC2.
GigaSpaces’s Space-Based Architecture (SBA) approaches are based on the Tuple Space model [53] that can meet the challenge of running low-latency transactional applications in a highly distributed environment such as Amazon EC2.
Security isolation is managed via virtualization in Azure. The Azure Fabric Controller is a service that monitors, maintains, and provisions machines to host the application that the developer creates and stores in the Microsoft cloud. Azure storage provides persistent, redundant storage in the cloud. It can store data in three different ways such as Blobs (large binary data), Queues (service communication abstraction), and Tables (service state and user data). Storage can be geo-located, which means you can choose in which region it can be hosted.
The agile nature of Sun Cloud provides multiple hardware architectures to customize systems for workload, multitenancy, and resource sharing among a large pool of users allowing centralized infrastructure with lower costs. Sun modular data center is flourishing and ten times faster to deploy than a conventional data center.