Добавил:
Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
блок общ био к экзу.docx
Скачиваний:
180
Добавлен:
18.06.2019
Размер:
197.95 Кб
Скачать

Основные закономерности существования живых организмов (35 вопросов)

1. Определение биологии как науки. Объект, задачи и методы. Связь биологии с другими науками. Значение биологии для медицины.

Термин «биология» образуется из двух греческих слов (bios – жизнь и logos – учение). Биология — это наука о взаимосвязи живых организмов с окружающей средой, их росте и развитии, а также размножении.

Термин был введен в 1802 году двумя естествоиспытателями – Ж.Б.Ламарком и Г.Р.Тревиранусом, независимо друг от друга.

Биология изучает общие закономерности, характерные для всего живого и раскрывающие сущность жизни, ее формы и развитие.

Основными методами, которые используются в биологических науках, являются:

1)наблюдение и описание – самый старый (традиционный) метод биологии. Этот метод широко используется и в наше время (в зоологии, ботанике, цитологии, экологии и др.)

2)сравнение, т.е. сравнительный метод дает возможность найти сходства и различия, общие закономерности в строении организмов.

3)опыт или эксперимент. Например, опыты Г.Менделя или работы И.П.Павлова в физиологии.

4)моделирование – создание определенной модели или процессов и их изучения. Например, моделирование условий и процессов (недоступных наблюдению) происхождения жизни.

5)исторический метод – изучение закономерности появления и развития организмов

Задачи биологии:

В области генетики

1)Вопрос образования сложных макромолекул

2)Проблема изучения последовательности нуклеотидов в ДНК у человека и высших животных

3)Вопросы регуляции генной активности и функционирование генов у эукариот

В области цитологии

4) Вопросы транспорта веществ

5) Особенности строения микроскопических структур клетки

6) Вопросы по механизмам, лежащим в основе деления клетки

В области онтогенеза

7) Дифференцировка клеток многоклеточных организмов

В области филогенеза

8) Проблема микроэволюции — формирование таксонов надвидового уровня

9) Проблема происхождения жизни – первичное образование самовоспроизводящихся молекул

В области биосферы

10) Рост населения

Проблемы в области экологии — озоновые дыры, кислотные дожди и др.

2. Основные свойства живых организмов. Уровни организации живого

Свойства живых систем:

1. Единство химического состава (98 % приходится на С, Н, О, N)

2. Упорядоченность строения (Дискретность)

3. Обмен веществ (ассимиляция – от простого к сложному, диссимиляция – от сложного к простому)

4. Самовоспроизведение (воспроизведение себе подобных, т.е. размножение)

5. Наследственность (материальные структуры наследственности – хромосомы и гены)

6. Изменчивость (свойства живых организмов приобретать новые, отличные от родительских, признаки)

7. Рост и развитие: онтогенез (индивидуальное развитие), филогенез (историческое развитие вида). Онтогенез подчиняется филогенезу.

8. Раздражимость (способность организма к адекватным реакциям). Рефлекс – ответная реакция организма на раздражения при наличии ЦНС (у кого есть головной и спинной мозг). Таксис – для животных, у которых нет ЦНС (напр., одноклеточные — у инфузорий отрицательный таксис на соль). Тропизм – ответная реакция для растений (поворот к солнечному свету).

9. Саморегуляция – способность поддерживать постоянство своего химического состава. Осуществляется нервной, эндокринной и др. системами. Гомеостаз – постоянство внутренней среды.

10. Ритмичность – согласование функций организма с периодически меняющимися условиями жизни.

11. Способность к эволюции (развитие)

Уровни организации жизни

Уровень организации Биологическая система Элементы образующие систему

1. Атомный — Атомы

2. Молекулярный — Молекулы

3. Субклеточный — Биополимеры, нуклеиновые кислоты

4. Клеточный Клетка Органоиды

5. Тканевый Ткань Клетки, межклеточное вещество

6. Органный Системы органов Ткани

7. Организменный Организм Системы органов

8. Популяционно-видовой Популяция Особи одного вида

9. Экосистемный Экосистема Популяция + окружающая среда

10. Биосферный Биосфера Экосистема

Ф.Энгельс:«Жизнь, есть способ существования белковых тел, состоящих в постоянном самообновлении химических составных частей этих тел. Существенным моментом которого является обмен веществ с окружающей средой, с прекращением которого прекращается и жизнь».

Волькенштейн: «Живые тела, существующие на земле представляют собой открытые саморегулирующиеся и самовоспроизводящиеся системы, состоящие из биополимеров – белков и нуклеиновых кислот».

3. Клеточная теория, этапы развития, современные положения клеточной теории.

Основа клеточной теории – все живое состоит из клеток.

В 1665 г. Р. Гук впервые обнаружил растительные клетки.

В 1674 г. А.Левенгук открыл животную клетку.

В 1839 г. Т.Шванн и М.Шлейден сформулировали клеточную теорию. Основным положением клеточной теории было то, что клетка является структурной и функциональной основой живых систем, но они ошибочно считали, что клетки образуются из бесструктурного вещества.

В 1859 г. Р.Вирхов доказал, что новые клетки образуются лишь путем деления предшествующих.

Основные положения клеточной теории:

1)Клетка является структурной и функциональной единицей всего живого. Все живые организмы состоят из клеток.

2)Все клетки в основном сходны по химическому составу и обменным процессам.

3)Новые клетки образуются путем деления уже существующих.

4)Все клетки одинаковым образом хранят и реализуют наследственную информацию.

5)Жизнедеятельность многоклеточного организма в целом обусловлена взаимодействием составляющих его клеток

4. Возникновение клеточной организации в процессе эволюции живого.

Существуют два этапа в эволюции клетки :

1.Химический.

2.Биологический.

Химический этап начался около 4,5 млрд лет назад. Под действием ультрафиолетового излучения, радиации, грозовых разрядов (источники энергии) происходило образование сначала простых химических соединений – мономеров, а затем более сложных – полимеров и их комплексов (углеводов, липидов, белков, нуклеиновых кислот).

Биологический этап образования клеток начинается с появления пробионтов – обособленных сложных систем, способных к самовоспроизведению, саморегуляции и естественному отбору. Пробионты появились 3-3,8 млрд. лет назад. От пробионтов произошли первые прокариотические клетки – бактерии. Эукариотические клетки произошли от прокариот (1-1,4 млрд. лет назад).

5. Этапы эволюции клетки. Гипотезы происхождения эукариотических клеток.

Существуют два этапа в эволюции клетки:

1.Химический.

2.Биологический.

Химический этап начался около 4,5 млрд лет назад. Под действием ультрафиолетового излучения, радиации, грозовых разрядов (источники энергии) происходило образование сначала простых химических соединений – мономеров, а затем более сложных – полимеров и их комплексов (углеводов, липидов, белков, нуклеиновых кислот).

Биологический этап образования клеток начинается с появления пробионтов – обособленных сложных систем, способных к самовоспроизведению, саморегуляции и естественному отбору. Пробионты появились 3-3,8 млрд. лет назад. От пробионтов произошли первые прокариотические клетки – бактерии.

Эукариотические клетки произошли от прокариот (1-1,4 млрд. лет назад) двумя путями:

1)Путем симбиоза нескольких прокариотических клеток – это симбиотическая гипотеза;

2)Путем инвагинации клеточной мембраны. Суть инвагинационной гипотезы заключается в том, что прокариотическая клетка содержала несколько геномов, прикрепленных к клеточной оболочке. Затем происходила инвагинация – впячивание, отшнуровка клеточной мембраны, и эти геномы превращались в митохондрии, хлоропласты, ядро.

6. Клетка как открытая система. Организация потоков вещества, энергии и информации в клетке.

Клетка — открытая система, поскольку ее существование возможно только в условиях постоянного обмена веществом и энергией с окружающей средой. Жизнедеятельность клетки обеспечивается процессами, образующими три потока: информации, энергии и веществ.

Благодаря наличию потока информации клетка приобретает структуру, отвечающую критериям живого, поддерживает ее во времени, передает в ряду поколений. В этом потоке участвуют ядро, макромолекулы, переносящие информацию в цитоплазму(мРНК), цитоплазматический аппарат транскрипции (рибосомы и полисомы, тРНК, ферменты активации аминокислот). Позже полипептиды, синтезированные на полисомах, приобретают третичную и четвертичную структуру, и используется в качестве катализаторов или структурных белков. Также функционируют геномы митохондрий, а в зеленых растениях — и хлоропластов.

Поток энергии обеспечивается механизмами энергообеспечения— брожением, фото- или хемосинтезом, дыханием. Дыхательный обмен включает реакции расщепления низкокалорийного органического «топлива» в виде глюкозы, жирных кислот, аминокислот, использование выделяемой энергии для образования высококалорийного клеточного «топлива» в виде аденозинтрифосфата (АТФ). Энергия АТФ в разнообразных процессах преобразуется в тот или иной вид работы — химическую (синтезы), осмотическую (поддержание перепадов концентрации веществ), электрическую, механическую, регуляторную. Анаэробный гликолиз — процесс бескислородного расщепления глюкозы. Фотосинтез — механизм преобразования энергии солнечного света в энергию химических связей органических веществ.

Дыхательный обмен одновременно составляет ведущее звено потока веществ, объединяющего метаболические пути расщепления и образования углеводов, белков, жиров, нуклеиновых кислот.

7. Элементарный химический состав живых систем. Микроэлементы и их значение. Вода и неорганические вещества, их роль в клетке.

Все живые системы содержат в различных соотношениях хи­мические элементы и построенные из них химические соедине­ния, как органические, так и неорганические.

По количественному содержанию в клетке все химические элементы делят на 3 группы:

макро-

микро -

ультрамикроэлементы.

Макроэлементы

Элементы, представленные в клетке в количестве десятых и сотых долей процента.

К микроэлементам, составляющим от 0,001 % до 0,000001 % массы тела живых существ, относят ванадий, германий, йод (входит в состав тироксина, гормона щитовидной железы), кобальт (витамин В12), марганец, никель, рутений, селен, фтор (зубная эмаль), медь, хром, цинк, молибден (участвует в связывании атмосферного азота), бор (влияет на ростковые процессы у растений).

Ультрамикроэлементы составляют менее 0,000001 % в организмах живых существ, к ним относят золото, серебро, которые оказывают бактерицидное воздействие, ртуть подавляет обратное всасывание воды в почечных канальцах, оказывая воздействие на ферменты. Также к ультрамикроэлементам относят мышьяк, платину и цезий, бериллий, радий и уран.

Органогены — химические элементы, входящие в состав всех органических соединений и составляющие около 98% массы клетки

Из неорганических веществ, входящих в состав клетки, важнейшим является вода. Количество ее составляет от 60 до 95% общей массы клетки. Вода играет важнейшую роль в жизни клеток и живых организмов в целом. Помимо того что она входит в их состав, для многих организмов это еще и среда обитания.

8. Структура и функции белков.

Белки - это полимеры, мономерами которых являются аминокислоты. В основном они состоят из углерода, водорода, кислорода и азота. Молекула белка может иметь 4 уровня структурной организации (первичная, вторичная, третичная и четвертичная структуры).

Функции белков:

1) защитная (интерферон усиленно синтезируется в организме при вирусной инфекции);

2) структурная (коллаген входит в состав тканей, участвует в образовании рубца);

3) двигательная (миозин участвует в сокращении мышц);

4) запасная (альбумины яйца);

5) транспортная (гемоглобин эритроцитов переносит питательные вещества и продукты обмена);

6) рецепторная (белки-рецепторы обеспечивают узнавание клеткой веществ и других клеток);

7) регуляторная (регуляторные белки определяют активность генов);

8) белки-гормоны участвуют в гуморальной регуляции (инсулин регулирует уровень сахара в крови);

9) белки-ферменты катализируют все химические реакции в организме;

10) энергетическая (при распаде 1 г белка выделяется 17 кДж энергии).

9. Строение и биологическое значение жиров и углеводов в организме.

Углеводы. Это моно- и полимеры, в состав которых входит углерод, водород и кислород в соотношении 1:2:1.

Функции углеводов:

1) энергетическая (при распаде 1 г углеводов выделяется 17,6 кДж энергии);

2) структурная (целлюлоза, входящая в состав клеточной стенки у растений);

3) запасающая (запас питательных веществ в виде крахмала у растений и гликогена у животных).

Жиры (липиды) могут быть простыми и сложными. Молекулы простых липидов состоят из трехатомного спирта глицерина и трех остатков жирных кислот. Сложные липиды являются соединениями простых липидов с белками и углеводами.

Функции липидов:

1) энергетическая (при распаде 1 г липидов образуется 38,9 кДж энергии);

2) структурная (фосфолипиды клеточных мембран, образую­щие липидный бислой);

3) запасающая (запас питательных веществ в подкожной клетчатке и других органах);

4) защитная (подкожная клетчатка и слой жира вокруг внутренних органов предохраняют их от механических повреждений);

5) регуляторная (гормоны и витамины, содержащие липиды, регулируют обмен веществ);

6) теплоизолирующая (подкожная клетчатка сохраняет тепло).

10. Нуклеиновые кислоты, их строение, значение, локализация в клетке.

Нуклеиновые кислоты — это фосфорсодержащие биополиме­ры, мономерами которых являются нуклеотиды. Цепи нуклеино­вых кислот включают от нескольких десятков до сотен миллионов нуклеотидов.

Существует 2 вида нуклеиновых кислот — дезоксирибонуклеиновая кислота (ДНК) и рибонуклеиновая кислота (РНК). Нуклеотиды, входящие в состав ДНК, содержат углевод, дезоксирибозу, в состав РНК — рибозу.

В ДНК входят четыре вида нуклеотидов, отличающихся по азотистому основанию в их составе, – аденин (А), гуанин (Г), цитозин (Ц) и тимин (Т). В молекуле РНК также имеется 4 вида нуклеотидов с одним из азотистых оснований – аденином, гуанином, цитозином и урацилом (У). Таким образом, ДНК и РНК различаются как по содержанию сахара в нуклеотидах, так и по одному из азотистых оснований.

Молекула ДНК может включать огромное количество нуклеотидов – от нескольких тысяч до сотен миллионов (поистине гигантские молекулы ДНК удается «увидеть» с помощью электронного микроскопа). В структурном отношении она представляет собой двойную спираль из полинуклеотидных цепей, соединенных с помощью водородных связей между азотистыми основаниями нуклеотидов. Благодаря этому полинуклеотидные цепи прочно удерживаются одна возле другой.

Соседние файлы в предмете Биология