- •7. Элементарный химический состав живых систем. Микроэлементы и их значение. Вода и неорганические вещества, их роль в клетке.
- •Макроэлементы
- •11. Кодирование и реализация биологической информации в клетке. Генетический код. Определение кодона и транскриптона. Экспрессия генов. Способы регуляции экспрессии генов.
- •12. Строение и функции клеточных мембран. Способы переноса веществ через биологические мембраны диффузии, активный и пассивный транспорт, эндо- и экзоцитоз. Клеточное соединение (контакты)
- •14. Строение и функции ядра клеток. Хроматин и хромосомы, их взаимосвязь и тонкое строение. Гетеро- и эухроматин. Виды и законы хромосом, понятие о кариотипе.
- •17. Амитоз, эндомитоз, политения, их характеристика и значение.
- •18. Размножение, формы и эволюция. Преимущества полового размножения.
- •20. Мейоз, цитологическая и цитогенетическая характеристика. Отличие мейоза от митоза.
- •Генетический аспект
- •Зачатки:
- •24. Эмбриональное развитие земноводных.
- •25. Эмбриональное развитие птиц.
- •27. Роль наследственности и среды в эмбриогенезе. Критические периоды эмбриогенеза. Тератогенные факторы среды.
- •35. Биологические ритмы на различных уровнях организации. Медицинское значение хронобиологии.
- •Зоология и паразитология.
- •1. Подцарство простейших(Protozoa), характеристика и классификация, филогенез простейших
Основные закономерности существования живых организмов (35 вопросов)
1. Определение биологии как науки. Объект, задачи и методы. Связь биологии с другими науками. Значение биологии для медицины.
Термин «биология» образуется из двух греческих слов (bios – жизнь и logos – учение). Биология — это наука о взаимосвязи живых организмов с окружающей средой, их росте и развитии, а также размножении.
Термин был введен в 1802 году двумя естествоиспытателями – Ж.Б.Ламарком и Г.Р.Тревиранусом, независимо друг от друга.
Биология изучает общие закономерности, характерные для всего живого и раскрывающие сущность жизни, ее формы и развитие.
Основными методами, которые используются в биологических науках, являются:
1)наблюдение и описание – самый старый (традиционный) метод биологии. Этот метод широко используется и в наше время (в зоологии, ботанике, цитологии, экологии и др.)
2)сравнение, т.е. сравнительный метод дает возможность найти сходства и различия, общие закономерности в строении организмов.
3)опыт или эксперимент. Например, опыты Г.Менделя или работы И.П.Павлова в физиологии.
4)моделирование – создание определенной модели или процессов и их изучения. Например, моделирование условий и процессов (недоступных наблюдению) происхождения жизни.
5)исторический метод – изучение закономерности появления и развития организмов
Задачи биологии:
В области генетики
1)Вопрос образования сложных макромолекул
2)Проблема изучения последовательности нуклеотидов в ДНК у человека и высших животных
3)Вопросы регуляции генной активности и функционирование генов у эукариот
В области цитологии
4) Вопросы транспорта веществ
5) Особенности строения микроскопических структур клетки
6) Вопросы по механизмам, лежащим в основе деления клетки
В области онтогенеза
7) Дифференцировка клеток многоклеточных организмов
В области филогенеза
8) Проблема микроэволюции — формирование таксонов надвидового уровня
9) Проблема происхождения жизни – первичное образование самовоспроизводящихся молекул
В области биосферы
10) Рост населения
Проблемы в области экологии — озоновые дыры, кислотные дожди и др.
2. Основные свойства живых организмов. Уровни организации живого
Свойства живых систем:
1. Единство химического состава (98 % приходится на С, Н, О, N)
2. Упорядоченность строения (Дискретность)
3. Обмен веществ (ассимиляция – от простого к сложному, диссимиляция – от сложного к простому)
4. Самовоспроизведение (воспроизведение себе подобных, т.е. размножение)
5. Наследственность (материальные структуры наследственности – хромосомы и гены)
6. Изменчивость (свойства живых организмов приобретать новые, отличные от родительских, признаки)
7. Рост и развитие: онтогенез (индивидуальное развитие), филогенез (историческое развитие вида). Онтогенез подчиняется филогенезу.
8. Раздражимость (способность организма к адекватным реакциям). Рефлекс – ответная реакция организма на раздражения при наличии ЦНС (у кого есть головной и спинной мозг). Таксис – для животных, у которых нет ЦНС (напр., одноклеточные — у инфузорий отрицательный таксис на соль). Тропизм – ответная реакция для растений (поворот к солнечному свету).
9. Саморегуляция – способность поддерживать постоянство своего химического состава. Осуществляется нервной, эндокринной и др. системами. Гомеостаз – постоянство внутренней среды.
10. Ритмичность – согласование функций организма с периодически меняющимися условиями жизни.
11. Способность к эволюции (развитие)
Уровни организации жизни
Уровень организации Биологическая система Элементы образующие систему
1. Атомный — Атомы
2. Молекулярный — Молекулы
3. Субклеточный — Биополимеры, нуклеиновые кислоты
4. Клеточный Клетка Органоиды
5. Тканевый Ткань Клетки, межклеточное вещество
6. Органный Системы органов Ткани
7. Организменный Организм Системы органов
8. Популяционно-видовой Популяция Особи одного вида
9. Экосистемный Экосистема Популяция + окружающая среда
10. Биосферный Биосфера Экосистема
Ф.Энгельс:«Жизнь, есть способ существования белковых тел, состоящих в постоянном самообновлении химических составных частей этих тел. Существенным моментом которого является обмен веществ с окружающей средой, с прекращением которого прекращается и жизнь».
Волькенштейн: «Живые тела, существующие на земле представляют собой открытые саморегулирующиеся и самовоспроизводящиеся системы, состоящие из биополимеров – белков и нуклеиновых кислот».
3. Клеточная теория, этапы развития, современные положения клеточной теории.
Основа клеточной теории – все живое состоит из клеток.
В 1665 г. Р. Гук впервые обнаружил растительные клетки.
В 1674 г. А.Левенгук открыл животную клетку.
В 1839 г. Т.Шванн и М.Шлейден сформулировали клеточную теорию. Основным положением клеточной теории было то, что клетка является структурной и функциональной основой живых систем, но они ошибочно считали, что клетки образуются из бесструктурного вещества.
В 1859 г. Р.Вирхов доказал, что новые клетки образуются лишь путем деления предшествующих.
Основные положения клеточной теории:
1)Клетка является структурной и функциональной единицей всего живого. Все живые организмы состоят из клеток.
2)Все клетки в основном сходны по химическому составу и обменным процессам.
3)Новые клетки образуются путем деления уже существующих.
4)Все клетки одинаковым образом хранят и реализуют наследственную информацию.
5)Жизнедеятельность многоклеточного организма в целом обусловлена взаимодействием составляющих его клеток
4. Возникновение клеточной организации в процессе эволюции живого.
Существуют два этапа в эволюции клетки :
1.Химический.
2.Биологический.
Химический этап начался около 4,5 млрд лет назад. Под действием ультрафиолетового излучения, радиации, грозовых разрядов (источники энергии) происходило образование сначала простых химических соединений – мономеров, а затем более сложных – полимеров и их комплексов (углеводов, липидов, белков, нуклеиновых кислот).
Биологический этап образования клеток начинается с появления пробионтов – обособленных сложных систем, способных к самовоспроизведению, саморегуляции и естественному отбору. Пробионты появились 3-3,8 млрд. лет назад. От пробионтов произошли первые прокариотические клетки – бактерии. Эукариотические клетки произошли от прокариот (1-1,4 млрд. лет назад).
5. Этапы эволюции клетки. Гипотезы происхождения эукариотических клеток.
Существуют два этапа в эволюции клетки:
1.Химический.
2.Биологический.
Химический этап начался около 4,5 млрд лет назад. Под действием ультрафиолетового излучения, радиации, грозовых разрядов (источники энергии) происходило образование сначала простых химических соединений – мономеров, а затем более сложных – полимеров и их комплексов (углеводов, липидов, белков, нуклеиновых кислот).
Биологический этап образования клеток начинается с появления пробионтов – обособленных сложных систем, способных к самовоспроизведению, саморегуляции и естественному отбору. Пробионты появились 3-3,8 млрд. лет назад. От пробионтов произошли первые прокариотические клетки – бактерии.
Эукариотические клетки произошли от прокариот (1-1,4 млрд. лет назад) двумя путями:
1)Путем симбиоза нескольких прокариотических клеток – это симбиотическая гипотеза;
2)Путем инвагинации клеточной мембраны. Суть инвагинационной гипотезы заключается в том, что прокариотическая клетка содержала несколько геномов, прикрепленных к клеточной оболочке. Затем происходила инвагинация – впячивание, отшнуровка клеточной мембраны, и эти геномы превращались в митохондрии, хлоропласты, ядро.
6. Клетка как открытая система. Организация потоков вещества, энергии и информации в клетке.
Клетка — открытая система, поскольку ее существование возможно только в условиях постоянного обмена веществом и энергией с окружающей средой. Жизнедеятельность клетки обеспечивается процессами, образующими три потока: информации, энергии и веществ.
Благодаря наличию потока информации клетка приобретает структуру, отвечающую критериям живого, поддерживает ее во времени, передает в ряду поколений. В этом потоке участвуют ядро, макромолекулы, переносящие информацию в цитоплазму(мРНК), цитоплазматический аппарат транскрипции (рибосомы и полисомы, тРНК, ферменты активации аминокислот). Позже полипептиды, синтезированные на полисомах, приобретают третичную и четвертичную структуру, и используется в качестве катализаторов или структурных белков. Также функционируют геномы митохондрий, а в зеленых растениях — и хлоропластов.
Поток энергии обеспечивается механизмами энергообеспечения— брожением, фото- или хемосинтезом, дыханием. Дыхательный обмен включает реакции расщепления низкокалорийного органического «топлива» в виде глюкозы, жирных кислот, аминокислот, использование выделяемой энергии для образования высококалорийного клеточного «топлива» в виде аденозинтрифосфата (АТФ). Энергия АТФ в разнообразных процессах преобразуется в тот или иной вид работы — химическую (синтезы), осмотическую (поддержание перепадов концентрации веществ), электрическую, механическую, регуляторную. Анаэробный гликолиз — процесс бескислородного расщепления глюкозы. Фотосинтез — механизм преобразования энергии солнечного света в энергию химических связей органических веществ.
Дыхательный обмен одновременно составляет ведущее звено потока веществ, объединяющего метаболические пути расщепления и образования углеводов, белков, жиров, нуклеиновых кислот.
7. Элементарный химический состав живых систем. Микроэлементы и их значение. Вода и неорганические вещества, их роль в клетке.
Все живые системы содержат в различных соотношениях химические элементы и построенные из них химические соединения, как органические, так и неорганические.
По количественному содержанию в клетке все химические элементы делят на 3 группы:
макро-
микро -
ультрамикроэлементы.
Макроэлементы
Элементы, представленные в клетке в количестве десятых и сотых долей процента.
К микроэлементам, составляющим от 0,001 % до 0,000001 % массы тела живых существ, относят ванадий, германий, йод (входит в состав тироксина, гормона щитовидной железы), кобальт (витамин В12), марганец, никель, рутений, селен, фтор (зубная эмаль), медь, хром, цинк, молибден (участвует в связывании атмосферного азота), бор (влияет на ростковые процессы у растений).
Ультрамикроэлементы составляют менее 0,000001 % в организмах живых существ, к ним относят золото, серебро, которые оказывают бактерицидное воздействие, ртуть подавляет обратное всасывание воды в почечных канальцах, оказывая воздействие на ферменты. Также к ультрамикроэлементам относят мышьяк, платину и цезий, бериллий, радий и уран.
Органогены — химические элементы, входящие в состав всех органических соединений и составляющие около 98% массы клетки
Из неорганических веществ, входящих в состав клетки, важнейшим является вода. Количество ее составляет от 60 до 95% общей массы клетки. Вода играет важнейшую роль в жизни клеток и живых организмов в целом. Помимо того что она входит в их состав, для многих организмов это еще и среда обитания.
8. Структура и функции белков.
Белки - это полимеры, мономерами которых являются аминокислоты. В основном они состоят из углерода, водорода, кислорода и азота. Молекула белка может иметь 4 уровня структурной организации (первичная, вторичная, третичная и четвертичная структуры).
Функции белков:
1) защитная (интерферон усиленно синтезируется в организме при вирусной инфекции);
2) структурная (коллаген входит в состав тканей, участвует в образовании рубца);
3) двигательная (миозин участвует в сокращении мышц);
4) запасная (альбумины яйца);
5) транспортная (гемоглобин эритроцитов переносит питательные вещества и продукты обмена);
6) рецепторная (белки-рецепторы обеспечивают узнавание клеткой веществ и других клеток);
7) регуляторная (регуляторные белки определяют активность генов);
8) белки-гормоны участвуют в гуморальной регуляции (инсулин регулирует уровень сахара в крови);
9) белки-ферменты катализируют все химические реакции в организме;
10) энергетическая (при распаде 1 г белка выделяется 17 кДж энергии).
9. Строение и биологическое значение жиров и углеводов в организме.
Углеводы. Это моно- и полимеры, в состав которых входит углерод, водород и кислород в соотношении 1:2:1.
Функции углеводов:
1) энергетическая (при распаде 1 г углеводов выделяется 17,6 кДж энергии);
2) структурная (целлюлоза, входящая в состав клеточной стенки у растений);
3) запасающая (запас питательных веществ в виде крахмала у растений и гликогена у животных).
Жиры (липиды) могут быть простыми и сложными. Молекулы простых липидов состоят из трехатомного спирта глицерина и трех остатков жирных кислот. Сложные липиды являются соединениями простых липидов с белками и углеводами.
Функции липидов:
1) энергетическая (при распаде 1 г липидов образуется 38,9 кДж энергии);
2) структурная (фосфолипиды клеточных мембран, образующие липидный бислой);
3) запасающая (запас питательных веществ в подкожной клетчатке и других органах);
4) защитная (подкожная клетчатка и слой жира вокруг внутренних органов предохраняют их от механических повреждений);
5) регуляторная (гормоны и витамины, содержащие липиды, регулируют обмен веществ);
6) теплоизолирующая (подкожная клетчатка сохраняет тепло).
10. Нуклеиновые кислоты, их строение, значение, локализация в клетке.
Нуклеиновые кислоты — это фосфорсодержащие биополимеры, мономерами которых являются нуклеотиды. Цепи нуклеиновых кислот включают от нескольких десятков до сотен миллионов нуклеотидов.
Существует 2 вида нуклеиновых кислот — дезоксирибонуклеиновая кислота (ДНК) и рибонуклеиновая кислота (РНК). Нуклеотиды, входящие в состав ДНК, содержат углевод, дезоксирибозу, в состав РНК — рибозу.
В ДНК входят четыре вида нуклеотидов, отличающихся по азотистому основанию в их составе, – аденин (А), гуанин (Г), цитозин (Ц) и тимин (Т). В молекуле РНК также имеется 4 вида нуклеотидов с одним из азотистых оснований – аденином, гуанином, цитозином и урацилом (У). Таким образом, ДНК и РНК различаются как по содержанию сахара в нуклеотидах, так и по одному из азотистых оснований.
Молекула ДНК может включать огромное количество нуклеотидов – от нескольких тысяч до сотен миллионов (поистине гигантские молекулы ДНК удается «увидеть» с помощью электронного микроскопа). В структурном отношении она представляет собой двойную спираль из полинуклеотидных цепей, соединенных с помощью водородных связей между азотистыми основаниями нуклеотидов. Благодаря этому полинуклеотидные цепи прочно удерживаются одна возле другой.