
- •Основы естественной энергетики
- •Раздел первый аккумулированная энергия Основные положения концепции естественной энергетики
- •Введение
- •Часть первая физика естественных энергетических процессов Введение
- •1. Осцилляторы газа
- •2. Нейтрон – сложная структура
- •3. Природа постоянной Авогадро и единицы массы в системе си
- •4. Температура и вакуум
- •5. Термодинамика
- •6. Механизм электродинамического взаимодействия осцилляторов
- •7. Фазовый переход высшего рода (фпвр)
- •8. Горение органического топлива – частичный фпвр
- •9. Естественный свет
- •10. Строение твердого тела
- •11. Жидкости и пары
- •12. Электрический ток. Лазер
- •Скорость электрического тока
- •13. Электрический аккумулятор
- •14. Строение атома
- •Валентность элементов
- •Маленький эпилог
- •1.2. Структура и механизм распада молекул азота
- •1.3. Баланс продуктов азотной реакции
- •1.4. Теплота азотной реакции
- •1.5. Источники плазмы и электронов
- •1.6. Инициирующие воздействия
- •Химические реакции
- •Ядерные реакции
- •Повышение температуры
- •Электрический разряд
- •1.6.6. Лазерное излучение
- •Оценка энергии инициированного лазером взрыва атмосферного воздуха
- •Электромагнитный импульс
- •Концентрированные потоки электронов и электрино
- •1.6.9. Детонация
- •1.6.10. Стоячие волны давления
- •1.6.11. Микровзрывы, кавитация
- •1.6.12. Катализаторы
- •1.6.12.1. Механизм катализа
- •2. Азотный термодинамический цикл работы двигателей внутреннего сгорания
- •2.1. Углерод в двигателях внутреннего сгорания
- •3. Паровая машина внутреннего сгорания замкнутого цикла
- •4. Азотные циклы котельных и газотурбинных установок
- •5. Кавитационные энергоустановки (кэу)
- •5.1. Кавитация как возбудитель ядерной реакции
- •5.2. Струйные и дроссельные кавитационные устройства
- •5.3. Вихревые теплогенераторы
- •5.4. Дисковые ультразвуковые теплогенераторы
- •5.5. Виброрезонансные установки
- •5.6. Электрогидравлические установки
- •6. Электрические генераторы
- •6.1. Процессы взаимодействия элементарных частиц в проводнике при генерации электрического тока
- •6.2. Магнитное поле Земли и его роль в генерации электричества и равновесии веществ
- •6.3. Генерация электрического тока в лазерах и аккумуляторах
- •6.4.Электрогенераторы на основе фазового перехода высшего рода
- •Фундаментальные константы физики Базиева
- •1. Самые мелкие частицы материи – субчастицы
- •2. Электрические заряды и их взаимодействие
- •3. Физическая природа гравитации
- •4. Система основных частиц материи
- •5. Особенности фазовых переходов вещества
- •6. Скорость распространения возмущений в веществе
- •7. Закономерности дискретных процессов
- •8. Форма атомов и состав периодической системы химических элементов
- •Литература
- •Раздел второй свободная энергия Введение
- •1.2. Орбитальное самовращение – основа энергетических процессов в природе.
- •2. Процессы в природных энергетических системах
- •2.1. Постоянный магнит как вечный двигатель.
- •2.1.1. Представление о магнитном потоке.
- •2.1.2. Механизм насыщения и возможность конструирования магнита.
- •2.2. Виброрезонансный энергообмен
- •2.2.1. Энергообмен между атомами, молекулами, телами и внешней средой с помощью динамического заряда
- •2.2.2. Физический механизм резонанса.
- •2.3. Алгоритм энергообмена в колебательных системах
- •4. Термические энергоустановки.
- •5. Природные энергоустановки.
- •6. Электромагнитные энергоустановки.
- •6.1. Двигатели Сёрла.
- •6.2. Принцип взаимодействия магнитов и самовращения магнитных систем.
- •6.3. Электрогенераторы с неподвижными постоянными магнитами.
- •6.4. Магнитоэлектрический моментный двигатель Волегова в.Е.
- •7. Кориолисовые двигатели.
- •7.1. Тепловые кориолисовые двигатели.
- •7.2. Магнитные кориолисовые двигатели.
- •8. Виброрезонансные энергоустановки.
- •9. Обзор работ по энергетическим установкам, процессам и эффектам.
- •10.2. Механизм горения топлива.
- •10.3. Роль топлива в процессе горения.
- •10.4. Единый механизм взрыва.
- •10.4.1. Твердые взрывчатые вещества (вв).
- •10.4.2. Жидкие взрывчатые вещества.
- •10.4.3. Газообразные взрывчатые вещества и объемно-детонирующие смеси.
- •10.4.4. Ядерный взрыв.
- •10.4.5. Термоядерный взрыв.
- •10.5. Расчетные зависимости энергии взрыва.
- •10.5.1. Лазерный взрыв.
- •10.5.2. Воздушный взрыв.
- •10.5.3. Взрыв объемно – детонирующей смеси.
- •10.6. Методы защиты от несанкционированного взрыва.
- •10.6.1. Исключение запыленности и загазованности.
- •10.6.2. Исключение повторных инициирующих воздействий.
- •10.6.3. Опасность пароводяных и водородных взрывов.
- •10.6.4. Особенности взрывов естественных взрывчатых веществ и поражающие факторы.
- •10.6.5. Защита от несанкционированного взрыва воздуха в цилиндре двс многоразовым магнитным воздействием.
- •11. Опасность электромагнитных излучений.
- •12. Быть в согласии с природой.
- •12.1. Логика и алгоритм начала мироздания.
- •12.2. Аналогия микро- и наномира. Равновесие атомов с природой.
- •Структурные характеристики сферических атомов.
- •12.3. Равновесие энергообмена в человеке.
- •12.4. Сознание.
- •12.4.1. Хранение информации.
- •12.4.2. Получение информации.
- •12.4.3. Каждый человек сам себе бог.
- •13. Перспективы естественной природной энергетики.
- •13.1. Основные этапы разработки.
- •13.2. Установки естественной энергетики.
- •13.2.1. Двигатели внутреннего и внешнего сгорания (двс).
- •13.2.2. Газотурбинные установки (гту).
- •13.2.3. Котельные установки.
- •13.3. От персональных компьютеров и транспортных средств – к персональным энергоустановкам.
- •13.4. Как быть с ядерной энергетикой?
- •13.5. Энергетика и оружие, тэк и впк.
- •13.6. Энергетическая перспектива.
- •Литература
- •Раздел третий реализация идей Введение
- •Часть первая эволюция новых взглядов в физике и энергетике
- •1. От осознания теории к изобилию энергии
- •2. Отличие обычного и бестопливного горения Обычное горение
- •3. Вихревые структуры и «дыхание» атомов
- •4. Природа сверхпроводимости
- •5. Современное представление о механизме энерговыделения при разложении перекиси водорода
- •6. Структура первых химических элементов таблицы Менделеева
- •7. Самоподдерживающаяся многорезонаторная бегущая волна – основа экономности энергетических процессов в природе
- •8. Электринная энергетика с атомным приводом
- •8.1. Движители транспортных средств
- •8.2. Магнитные электроустановки
- •8.3. Катализаторы с резонансом
- •8.4. Шаровые молнии
- •9. Некоторые особенности перетока электрино в энергетических процессах
- •9.1. Физический механизм фазовых переходов
- •9.2. Электрическое сопротивление – рассеяние электрино
- •9.3. Природа радиоактивности
- •9.4. Отжиг металлов и магнетизм
- •9.5. Концентраторы магнитного потока
- •10. Почему?
- •10.1. Почему дистиллированная вода – диэлектрик?
- •10.2. Почему небо голубое, а скорость света – разная?
- •10.3. Почему воздушная атмосфера не падает на Землю, не улетает от нее и не взрывается?
- •10.4. Почему температура термодинамического цикла двигателя внутреннего сгорания при автотермическом режиме снижается, а мощность возрастает?
- •Часть вторая реализация новых идей в энергетике
- •11. Бестопливный автотермический режим самогорения воздуха в двигателе внутреннего сгорания
- •12. Решающие разработки, обеспечившие выход на бестопливный режим
- •12.1. Раздельная до- и внутрицилиндровая обработка воздуха
- •12.2. Определение роли топлива в процессе горения
- •12.3. Единство и возможность усиления магнитной и каталитической обработки веществ
- •13. Алгоритм настройки двигателя на режим самогорения воздуха
- •13.1. Выбор материалов и разработка конструкции оптимизатора для обработки воздуха
- •13.2. Настройка карбюратора
- •13.3. Регулировка зажигания
- •13.4. Отработка основных режимов двигателя
- •13.4.1. Пуск, прогрев и холостой ход
- •13.4.2. Движение со скоростью 60…70 км/ч и числом оборотов 2000…2500 об/мин.
- •13.4.3. Движение со скоростью 70 км/ч и числом оборотов более 3500 об/мин.
- •13.4.4. Переходные режимы, перегазовки
- •13.4.5. Сезонные особенности
- •13.4.6. Лучший вариант подготовки двигателя к автотермическому режиму.
- •14. Основные направления естественной энергетики
- •15. Социальные аспекты энергетики
- •15.1. Социальные последствия традиционной энергетики
- •15.2. Социальные перспективы естественной энергетики
- •16. Описание изобретений
- •16.1. Способ подготовки топливно-воздушной смеси и устройство для его осуществления
- •16.2. Устройство для обработки воздуха топливно-воздушной смеси
- •16.3. Способ повышения энергии рабочей среды для получения полезной работы
- •Заключение
- •Литература:
- •Раздел четвертый горение
- •1. Природные процессы бестопливной энергетики
- •Часть первая горение эфира
- •2. Физический механизм энергообмена
- •3. Секреты Тесла
- •4. Электрические машины – генераторы избыточной электрической энергии
- •4.1. Электрические трансформаторы
- •4.2. Электрические генераторы
- •4.3. Электрические двигатели
- •4.4. Электрогенераторы на постоянных магнитах
- •5. Физический механизм создания звуковых и ударных волн
- •5.1. Алгоритм и пример расчета параметров звуковой волны
- •5.2. Алгоритм разгона звуковой волны
- •5.3. Звуковые волны – природный источник энергии
- •6. Энергетическая основа жизни (и работы энергоустановок)
- •7. Отдельные энергетические эффекты эфира
- •7.1. Эффект полостных структур
- •7.2. Сверхтекучесть
- •7.3. Принудительная трансмутация и дезактивация химических элементов
- •Часть вторая горение воздуха
- •8. Резюме. Оптимизация процессов горения
- •9. К физическому механизму горения воздуха
- •9.1. Процессы с воздухом и кислородом
- •9.2. Процессы с топливом
- •10. Факторы и воздействия, способствующие горению
- •11. Пределы горючести воздуха
- •12. Необычность режима горения при уменьшении расхода бензина в двс
- •13. Меры обеспечения стабильной работы автомобильного двигателя в бестопливном режиме
- •13.1. Адресное микродозирование топлива
- •13.2. Первоочередные мероприятия для двс
- •13.2.1. Доцилиндровая обработка воздуха
- •13.2.2. Внутрицилиндровая обработка
- •13.2.3. Использование катализаторов
- •13.2.4. Адаптация зажигания
- •13.2.5. Повышение оборотов
- •13.2.6. Устранение несанкционированного подсоса топлива
- •13.2.7. Наложение высокого напряжения
- •14. Рекомендации по улучшению работы автомобильного двигателя при эксплуатации на азотном режиме
- •15. Рекомендации по организации перевода двигателей внутреннего и внешнего сгорания на азотный цикл с пониженным расходом топлива
- •16. Горелки и камеры сгорания
- •Часть третья горение воды Введение
- •17. Катализ и сжигание воды
- •18. Получение энергии электролизом
- •19. Кавитация как источник энергии
- •20. Повышение напора энергией природы
- •21. Самовращение в гидравлической энергетике
- •Часть четвертая горение души
- •22. Некоторые особенности энергетики человека
- •22.2. Электрическое шунтирование как метод лечения
- •22.3. Железа – электрический конденсатор
- •22.4. Вирусы – фрагменты наших клеток
- •22.5. Древние лабиринты – естественные высокочастотные электрические генераторы
- •23. Жить в согласии с законами природы. Говорят и по другому: красота спасет мир
- •23.1. Медикаменты, хирургия, облучения – враги или друзья
- •23.2. «Доходит как до жирафа»
- •23.3. Лавуазье – новатор или консерватор
- •23.4. О пользе нетрадиционных знаний
- •24. Новые источники природной энергии – главная основа естественной энергетики
- •25. Первоочередные работы по естественной энергетике
- •Постскриптум
- •Литература
- •Содержание
9.4. Отжиг металлов и магнетизм
При отжиге (нагревании) любого вещества увеличивается частота колебаний атомов. Отрицательно заряженные атомы, имеющие вокруг себя вихри электрино, сбрасывают их за счет увеличившихся центробежных и других динамических сил, превышающих прочность связи частиц с атомом. Например, молекула азота N2 вообще имеет в вихре постоянно только одну частицу – электрино. Так и в магнитных металлах, вихрь уменьшается до минимума, который уже не ощущается как магнитная индукция. Отжиг не только уничтожает собственные вихри, но и разбрасывает по разным направлениям векторы оставшихся вихрей-импотентов. Именно поэтому отожженные металлы не проявляют магнитных свойств.
Это нужно только при переменных магнитных полях, при перемагничивании магнитных материалов, чтобы не было сопротивления собственных вихрей электрино. Собственные вихри атомов всегда значительно мощнее внешнего магнитного потока: по плотности, объему потока электрино, скорости (1021 м/с против 108 м/с для электрического тока). Вихри – гироскопы, вращающиеся с бешенной скоростью, так что развернуть их внешним магнитным полем очень трудно. Но развернутые вихри как гироскопы сохраняют свое направление. Поэтому при перемагничивании вихри-гироскопы оказывают большое сопротивление. Чтобы этого не было отжигают металл, оставляя атомы «лысыми» – без вихрей электрино. Так измерения показывают, что остаточная индукция, например, стали составляет 0.15…0.25 Тл вместо 2.4 Тл (индукция насыщения), то есть в 10…15 раз меньше и это даже на коническом концентраторе, о котором речь в следующем параграфе.
9.5. Концентраторы магнитного потока
Иногда для увеличения силы притяжения полюсов магнитов или увеличения магнитной индукции в зазоре между полюсами применяют концентраторы магнитного потока. Распространенным концентратором является конусообразный призматический полюс, который применяют вместо плоского полюса. При этом сила притяжения увеличивается пропорционально отношению площади сечения магнита на входе магнитного потока к площади сечения, через которое он выходит из полюса (там, где выходит, полюс является северным магнитным, обозначаемым обычно буквой N). Казалось бы, сечение полюса меньше и сила должна быть меньше: ведь при скашивании конуса или призмы до острой кромки или жала, несмотря на указанное классическое соотношение, сила, очевидно, будет нулевой.
Рассмотрим суть явления. Атомы в магните, имея свои вихри электрино, в количестве, например, 5% от значения избыточного заряда, качают магнитный поток электрино как насосы. Поскольку насосы как бы соединены последовательно в ряд по ходу межатомного туннельного (коридорного) канала, то их напоры, потенциалы, концентрации электрино в потоке складываются и на выходе имеем их максимальными. В то же время 95% заряда каждого атома на том же выходе (конусе) было свободно от вихрей. Магнитный же поток выносит на поверхность конуса избыток зарядов в виде частиц-электрино. Эти электрино могут остаться (не быть рассеянными), так как их притягивает еще 95% заряда атома. То есть их количество и магнитная индукция как плотность потока может возрасти, как видно, в 20 раз. Суммарный заряд электрино на остром конце полюса выхода магнитного потока может быть даже выше, чем отрицательный избыточный заряд магнита. А раз индукция больше, то притяжение полюсов больше, так как притяжение – это суперпозиция (перекрестное взаимодействие) полярных зарядов.
Обычно в зоне острия магнита не только больше концентрация и плотность потока электрино (магнитная индукция), но и скорость электрино, может быть свечение на острой кромке в атмосферном воздухе, тихий пробой, электрический разряд.
Магнитный порошок как однодоменная структура малого размера, имитирующего жало конуса, также является концентратором магнитного потока. Магнитная индукция возрастает настолько, что ее (потока, плотности и скорости электрино) достаточно для нейтрализации и разрушения структуры воздуха и кислорода на атомы, с которыми начинают взаимодействовать электроны-генераторы энергии: происходит ФПВР с воспламенением на открытом атмосферном воздухе. Поэтому магнитные порошки, например, самарий-кобальт, хранят в банке с углеводородом.
Концентрации магнитного потока можно добиться также тяжелыми металлами, имеющими большие вихри электрино вокруг атомов. Эти вихри поглощают, экранируют, магнитный поток, но зато сами возрастают за счет магнитного потока и оказывают более сильное, например, каталитическое – разрушительное воздействие на прокачиваемое мимо них вещество.