Скачиваний:
114
Добавлен:
12.06.2019
Размер:
3.44 Mб
Скачать

6.4. Магнитоэлектрический моментный двигатель Волегова в.Е.

По классификации относится к магнитным двигателям с обмотками. Двигатель высокоскоростной (~18000 об/мин) и поэтому малогабаритный. Двигатель реально созданный и работающий, запатентован /11/. Двигатель состоит из статора, ротора и блока управления. Ротор, в свою очередь, состоит из кольцевой формы магнитов с осевой намагниченностью из 8-ми сегментов каждый с чередующейся полярностью. Кроме того, чередуется полярность сегментов соседних магнитов, находящихся на одной прямой в осевом направлении. Между магнитами оставлены кольцевые зазоры для размещения обмоток статора. Обмотки закреплены на полом валу статора. Навиты спирально из магнитомягкого материала – ленты тонкого пермаллоя с электрическими выводами через полый вал к блоку управления. Количество обмоток в кольцевом зазоре равно количеству сегментов магнита. Ротор вращается на подшипниках, закрепленных на полом валу статора.

Принцип действия двигателя Волегова заключается в подаче рабочего напряжения на катушку обмотки, создающего осевую намагниченность. При приближении полюса катушки к разноименному полюсу сегмента магнита полюса притягиваются. При проходе середины сегмента катушкой в ней делают переполюсовку и теперь одноименные полюса катушки и сегмента магнита взаимно отталкиваются, поддерживая вращательное движение ротора.

Особенностью работы двигателя является резкий саморазгон при большом числе оборотов. Заставляя работать на одном валу две машины: одну – в режиме двигателя, а другую – в режиме электрогенератора, Волегов В.Е. получил избыточную мощность порядка 30%. Скорее всего она получена за счет эффекта Сёрла, двигатель которого тоже состоит из кольцевых магнитов, состоящих из сегментов. Принцип действия двигателя Сёрла изложен выше. Недостатками двигателя Волегова являются те же магнитные эффекты, которые сопровождают работу вращающихся магнитных двигателей всех типов, не позволяющих их пока использовать для бытовых и промышленных нужд.

Двигатель Волегова может быть усовершенствован в соответствии с изложенной в книге теорией за счет снижения оборотов, устранения нежелательных магнитных эффектов, увеличения мощности путем изменения конструкции и размеров обмотки и т.п.

Известны также более совершенные микродвигатели Боголюбова В.А., в которых отсутствует необходимость переполюсовки.

7. Кориолисовые двигатели.

7.1. Тепловые кориолисовые двигатели.

Известен проект ротативного двигателя Чернышева И.Д. /12/. Двигатель представляет собой ротор в виде диска, установленного на валу. На периферии диска с помощью кольца закреплены камеры сгорания со свечами зажигания и жиклерами подвода топлива (бензин, метан) и воздуха. Каждая камера содержит щелевое критическое сечение, направленное по всей длине его образующей к оси двигателя, и сверхзвуковую часть в виде плоского укороченного сопла, направленного под углом 30° к плоскости критического сечения для тангенциального выхлопа. По расчету автора проекта при диаметре ротора 0,33 м и длине 0,3 м, скорости вращения 6000 об/мин, количестве камер б штук, двигатель имеет мощность 147 кВт (200л.с.) и расход метана 3,6 г/(кВт-ч), что более чем на порядок превышает характеристики существующих двигателей внутреннего сгорания.

Принцип работы кориолисового двигателя, его самовращения после первоначальной раскрутки изложены в первой части книги. Радиальное течение выхлопных газов создает кориолисову силу в сторону вращения ротора, затем переходит в тангенциальное сверхзвуковое течение, еще увеличивающее крутящий момент на валу ротора.

По имеемой информации макетный образец двигателя был испытан в работе на воде с взрывным воздействием с помощью электрического разряда. От высокой скорости вращения макет разрушился.

Видимо, двигателю лучше работать на воздухе по азотному циклу или на воде –по кавитационному циклу, то есть за счет энергии, аккумулированной в указанных веществах.