
- •Когерентные источники света. Условия усиления и ослабления волн.
- •Интерференция света в тонких пленках. Просветление оптики.
- •Интерферометры и их применение. Интерференционный микроскоп.
- •Явление дифракции. Принцип Гюгенса – Френеля. Дифракция на щели в параллельных лучах.
- •Дифракционная решетка. Дифракционный спектр.
- •Основы рентгеноструктурного анализа.
- •Голография. Перспективы расширения применения голографии в медицине.
- •Геометрическая оптика. Понятие о двойственной природе света. Законы геометрической оптики.
- •Понятие тонкой линзы. Типы линз. Основные линии, плоскости и точки линзы. Формула тонкой линзы. Оптическая сила линзы.
- •10.Построение изображений в собирающих и рассеивающих линзах. Гомоцентрические и параксиальные лучи.
- •Аберрации линз. Сферическая аберрация. Примеры. Способы устранения.
- •12.Аберрации линз. Хроматическая аберрация. Примеры. Способы устранения.
- •13.Астигматизм. Виды астигматизма. Способы устранения.
- •14. Понятие об идеальной центрированной оптической системе.
- •15.Оптическая система глаза и ее особенности. Недостатки оптической системы глаза и способы их устранения.
- •16.Микроскоп, как центрированная оптическая система. Разрешающая способность и полезное увеличение микроскопа.
- •17.Специальные приемы микроскопии. Теория Аббе. Иммерсионная микроскопия.
- •18.Специальные приемы микроскопии. Измерение размеров объекта. Микропроекция и микрофотография. Фазово-контрастная и ультрамикроскопия.
- •19.Волоконная оптика и ее использование в оптических устройствах.
- •20.Свет естественный и поляризованный. Поляризаторы. Закон Малюса.
- •21.Поляризация света при отражении и преломлении на границе двух диэлектриков.
- •22.Поляризация света при двойном лучепреломлении.
- •23.Вращения плоскости поляризации. Поляриметрия.
- •24.Исследование биологических тканей в поляризованном свете.
18.Специальные приемы микроскопии. Измерение размеров объекта. Микропроекция и микрофотография. Фазово-контрастная и ультрамикроскопия.
19.Волоконная оптика и ее использование в оптических устройствах.
Это область науки и техники, которая занимается изучением явлений, возникающих при распространении света в волоконных световодах; применением волоконных световодов и технологией их изготовления. Волоконный световод – это длинная тонкая нить, как правило, из стекла, имеющая сложную внутреннюю структуру. В простейшем случае световод состоит из сердцевины с показателем преломления n1, оболочки с показателем преломления n2 (при этом n1 > n2) и защитного покрытия. Сердцевина и оболочка образуют волноводную структуру, обеспечивающую распространение излучения, а внешнее покрытие (полимерное, металлическое и пр.) предохраняет световод от внешних воздействий.
20.Свет естественный и поляризованный. Поляризаторы. Закон Малюса.
Естественный свет - оптическое излучение с быстро и беспорядочно изменяющимися направлениями напряжённости эл.-магн. поля, причём все направления колебаний, перпендикулярные к световым лучам, равновероятны.
Поляризованный – свет, в котором направления колебаний светового вектора упорядочены каким-либо образом.
Частично-поляризованный свет – если в результате каких-либо внешних воздействий появляется преимущественное направление колебаний вектора Е.
Плоскополяризованный – если колебания вектора Е происходят только в одной плоскости.
Интенсивность света после поляризатора определяется законом Малюса. I=I0*cos2α
I0-интенсивность до поляризатора; I – интенсивность после поляризатора; α – угол между вектором Е и плоскостью поляризации.
Пусть на 2 поляризатора падает естественный свет.
I1=1/2*Iест
I2=1/2*Iест*cos2α=I1*cos2α
Степень поляризации луча Δ=(Imax-Imin)/(Imax*Imin)
21.Поляризация света при отражении и преломлении на границе двух диэлектриков.
Поляризованный свет можно получить, используя отражение или преломление света от диэлектрических изотропных сред. Если угол падения света на границу раздела двух диэлектриков отличен от нуля, отраженный и преломленный лучи оказываются частично поляризованными. Степень поляризации того и другого луча зависит от угла падения луча. У каждой пары прозрачных сред существует такой угол падения, при котором отраженный свет становится полностью плоскополяризованным, а преломленный луч остается частично поляризованным, но степень его поляризации при этом угле максимальна. Этот угол называется углом Бpюстеpа. Угол Брюстера определяется из условия: tgφБр=n21=n2/n1