
- •Когерентные источники света. Условия усиления и ослабления волн.
- •Интерференция света в тонких пленках. Просветление оптики.
- •Интерферометры и их применение. Интерференционный микроскоп.
- •Явление дифракции. Принцип Гюгенса – Френеля. Дифракция на щели в параллельных лучах.
- •Дифракционная решетка. Дифракционный спектр.
- •Основы рентгеноструктурного анализа.
- •Голография. Перспективы расширения применения голографии в медицине.
- •Геометрическая оптика. Понятие о двойственной природе света. Законы геометрической оптики.
- •Понятие тонкой линзы. Типы линз. Основные линии, плоскости и точки линзы. Формула тонкой линзы. Оптическая сила линзы.
- •10.Построение изображений в собирающих и рассеивающих линзах. Гомоцентрические и параксиальные лучи.
- •Аберрации линз. Сферическая аберрация. Примеры. Способы устранения.
- •12.Аберрации линз. Хроматическая аберрация. Примеры. Способы устранения.
- •13.Астигматизм. Виды астигматизма. Способы устранения.
- •14. Понятие об идеальной центрированной оптической системе.
- •15.Оптическая система глаза и ее особенности. Недостатки оптической системы глаза и способы их устранения.
- •16.Микроскоп, как центрированная оптическая система. Разрешающая способность и полезное увеличение микроскопа.
- •17.Специальные приемы микроскопии. Теория Аббе. Иммерсионная микроскопия.
- •18.Специальные приемы микроскопии. Измерение размеров объекта. Микропроекция и микрофотография. Фазово-контрастная и ультрамикроскопия.
- •19.Волоконная оптика и ее использование в оптических устройствах.
- •20.Свет естественный и поляризованный. Поляризаторы. Закон Малюса.
- •21.Поляризация света при отражении и преломлении на границе двух диэлектриков.
- •22.Поляризация света при двойном лучепреломлении.
- •23.Вращения плоскости поляризации. Поляриметрия.
- •24.Исследование биологических тканей в поляризованном свете.
-
Дифракционная решетка. Дифракционный спектр.
Дифракционная решетка— оптическое устройство, представляющее собой совокупность большого числа параллельных, обычно равноотстоящих друг от друга, щелей.
Дифракционные решетки делятся на отражательные (штрихи нанесены на металлическую поверхность) и прозрачные (штрихи нанесены на стеклянную поверхность). При прохождении через дифракционную решетку световая волна длиной λ на экране будет давать последовательность минимумов и максимумов интенсивности. Максимумы интенсивности будут наблюдаться под углом φ: где m – целое число, называемое порядком дифракционного максимума.
Если на решетку падает пучок когерентных волн, то вторичные волны, идущие по всевозможным направлениям, будут интерферировать, формируя дифракционную картину.
дифракционный спектр – это результат огибания светом препятствий, например затемненных зон у дифракционной решетки. ... Спектр при дисперсии можно получать при пропускании света сквозь призму. Спектр получается растянутым в фиолетовом направлении и сжатым в красном.
-
Основы рентгеноструктурного анализа.
Рентгеноструктурный анализ — дифракционный метод исследования структуры вещества. В основе данного метода лежит явление дифракции рентгеновских лучей на трехмерной кристаллической решетке. Метод позволяет определять атомную структуру вещества, включающую в себя пространственную группу элементарной ячейки, ее размеры и форму, а также определить группу симметрии кристалла.
В настоящее время широко применяют рентгеноструктурный анализ биологических молекул и систем: на рис. 19.22 показаны рентгенограммы белков. Этим методом Дж. Уотсон и Ф. Крик установили структуру ДНК и были удостоены Нобелевской премии (1962). Использование дифракции рентгеновских лучей от кристаллов для исследования их спектрального состава относится к области рентгеновской спектроскопии.
-
Голография. Перспективы расширения применения голографии в медицине.
Голография — метод записи и восстановления волнового поля, основанный на интерференции и дифракции волн. Идея голографии была впервые высказана Д. Табором в 1948 г., однако ее практическое использование оказалось возможным после появления лазеров.
Изложение основ голографии уместно начать сравнением с фотографией. При фотографировании на фотопленке фиксируется интенсивность световых волн, отраженных предметом. Изображение в этом случае является совокупностью темных и светлых точек. Фазы рассеиваемых волн не регистрируются, и таким образом пропадает значительная часть информации о предмете.
Голография позволяет регистрировать и воспроизводить более полную информацию об объекте с учетом амплитуд и фаз волн, рассеянных предметом. Регистрация фазы возможна вследствие интерференции волн.
Получив голограмму в ультразвуковых механических волнах, можно восстановить ее видимым светом. Ультразвуковая голография в перспективе может быть использована в медицине для рассматривания внутренних органов человека с диагностической целью. Учитывая большую информативность этого метода и существенно меньший вред ультразвука по сравнению с рентгеновским излучением, можно ожидать, что вбудущем ультразвуковая голографическая интроскопия заменит традиционную рентгенодиагностику.
Еще одно медико-биологическое приложение голографии связано с голографическим микроскопом. Один из первых способов построения голографического микроскопа основан на том, что изображение предмета получается увеличенным, если голограмму, записанную с плоской опорной волной, осветить расходящейся сферической волной.
В развитие голографии внес вклад советский физик Ю. Н. Денисюк, разработавший метод цветной голографии.
Сейчас трудно оценить все возможности применения голографии: кино, телевидение, запоминающие устройства и т. д. Несомненно лишь, что голография является одним из величайших изобретений XX в.