
- •1.3. Механическое взаимодействие отливки и формы. Дефекты в отливках, возникающие в результате этого взаимодействия. Меры их предупреждения.
- •1.5. Термические и химические взаимодействие отливки и формы. Дефекты в отливках, возникающие в результате этого взаимодействия. Меры их предупреждения.
- •1.6. Изготовление отливок в песчаные формы. Технологические возможности способа.
- •1.9. Изготовление отливок методом центробежного литья. Технологические возможности способа.
- •1.7.Изготовление отливок литьем в кокиль. Технологические возможности способа.
- •1.8. Изготовление отливок под давлением. Технологические возможности способа.
- •1.10. Изготовление отливок по выплавляемым моделям. Технологические возможности способа.
- •1.11. Изготовление отливок из серого чугуна(маркировка, свойства, форма графита и особенности изготовления отливок).
- •1.13. Изготовление отливок из ковкого чугуна(маркировка, свойства, форма графита и особенности изготовления отливок).
- •1.14. Изготовление отливок алюминиевых сплавов(маркировка, свойства, форма графита и особенности изготовления отливок).
- •1.15. Изготовление стальных отливок(маркировка, свойства, форма графита и особенности изготовления отливок).
- •1.16. Изготовление отливок из магниевых сплавов(маркировка, свойства, форма графита и особенности изготовления отливок).
- •2.10.11.13.15.16. Возможные способы улучшения качества стали при разливке. Схема. Сущность способов.
- •2.8. Непрерывная разливка стали. Схема, преимущества непрерывной разливки по сравнению с разливкой в изложницы.
- •2.2. Основные металлургические законы и их роль в процессе производства стали и электродуговых печах.
- •2.3. Производство стали в мартеновских печах. Основные этапы при получении стали. Качество стали.
- •2.4. Производство стали в кислородном конвертере. Схема конвертера. Особенности процессов, происходящих в период плавки. Раскисление стали.
- •2.5. Строение слитка спокойной стали(эскиз стали, особенности кристаллизации)
- •2.6. Строение слитка кипящей стали, области применения кипящей стали
- •3.12 Способы получения труб обработкой давления, область рационального применения, особенности получаемой продукции
- •3.19 Формоизменяющие операции листовой штамповки вытяжка, формовка, отбортовка, их схемы и технологические возможности
- •3.4-5 Холодная и горячая деформация. Нагрев металла при обработке давлением : дефекты, возможные при нагреве заготовок.
- •3.2,5-7.Влияние схемы напряженного состояния на пластичность и сопротивление деформированного сплава.
- •4.19. Способы и технологические особенности сварки тугоплавких сплавов(на основе Ti, w, Mo)
- •4.12. Сущность схемы и технологические возможности основных видов контактной сварки.
- •4.16. Способы и технологические особенности сварки алюминиевых и магниевых сплавов. Виды дефектов. Способы их устранения.
- •4.17. Сущность, схема, технологические возможности лучевых способов сварки.
- •4.15. Сущность, схема, технологические возможности диффузионной сварки в вакууме.
- •4.13. Сущность схемы и технологические возможности электрошлаковой сварки.
- •4.11. Способы и технологические особенности сварки низко и среднелегированных сталей. Виды дефектов, способы их устранения.
- •4.9. Сущность схемы и технологические возможности основных видов дуговой сварки.
- •4.7. Дефекты в сварных соединениях. Возникновение горячих и холодных трещин. Методы их устранения.
- •4.6. Влияние остаточных напряжений и деформаций на форму и размеры сварных конструкций. Способы уменьшения остаточных напряжений и деформаций
- •4.2. Понятие о свариваемости и ее показателях. Способы повышения качества сварных конструкций.
- •4.13. Сущность схемы и технологические возможности основных видов контактной сварки тонколистовых конструкций.
- •4.3. Свариваемость металлов и сплавов. Основные дефекты в сварных соединениях. Способы повышения качества сварных конструкций.
- •4.1. Понятие о технологичности сварных конструкций. Критерии технологичности. Методы технологичности.
- •4.4. Возникновение временных и остаточных напряжений и деформаций при сварке. Причины возникновения и способы их снижения.
1.15. Изготовление стальных отливок(маркировка, свойства, форма графита и особенности изготовления отливок).
Для изготовления отливок используют углеродистые и легированные стали. Литейные стали обозначают аналогично конструкционным сталям. В марках углеродистых литейных сталей—15Л, 20Л — 60Л, легированных —30ХГСЛ, 15Х18Н9ТЛ, 110Г13Л и т.п., буква Л обозначает принадлежность к литейным сталям.
Углеродистые литейные стали обладают высокими временным сопротивлением (400—600 МПа), относительным удлинением (10—24%), ударной вязкостью, достаточной износостойкостью при ударных нагрузках. Основной элемент, определяющий механические свойства углеродистых литейных сталей,— углерод.
Механические свойства легированных литейных сталей определяются количеством легирующих элементов. Легирование значительно повышает механические и эксплуатационные свойства (жаропрочность, коррозионную стойкость, износостойкость и т. д.). Например, марганец повышает износостойкость, хром — жаростойкость, никель— коррозионную стойкость и т. д.
Литейные стали имеют пониженную жидкотекучесть, высокую усадку (до 2,5%), склонны к образованию трещин.
Для плавки литейных сталей, как правило, используют дуговые и индукционные печи. В последнее время для плавки стали широко начинают использовать плазменно-индукционные печи.
В качестве шихтовых материалов применяют стальной лом, отходы собственного производства, передельный чугун, руду, флюсы и другие материалы. Стальные отливки преимущественно изготовляют в песчаных и оболочковых формах, литьем по выплавляемым моделям, центробежным литьем, литьем в облицованные кокили и другими способами.
Для предупреждения трещин формы изготовляют из податливых формовочных смесей, в отливках предусматривают технологические ребра.
Высокая температура заливки (1550— 1650° С) требует применения формовочных и стержневых смесей с высокой огнеупорностью.
Литниковые системы для мелких и средних отливок выполняют по разъему или сверху, а для массивных — снизу сифоном.
Для получения высоких механических и эксплуатационных характеристик стальные отливки подвергают отжигу, нормализации и другим видам термической обработки.
Стальные отливки из углеродистых сталей используют в металлургии, в станкостроении, автотракторной промышленности, транспортном машиностроении и других отраслях. Из них изготовляют станины и валки прокатных станов, цилиндры, зубчатые колеса и т. д. Легированные стали используют в энергомашиностроении, химической и нефтегазовой промышленности, металлургии и др. Из них изготовляют турбинные лопатки, клапаны гидропрессов, арматуру химической и нефтегазовой промышленности, зубья ковшей экскаваторов и другие отливки.
Стальные отливки получают массой от нескольких граммов до нескольких десятков тонн с толщиной стенки 1 — 300 мм.
1.16. Изготовление отливок из магниевых сплавов(маркировка, свойства, форма графита и особенности изготовления отливок).
Для изготовления отливок используют магниевые сплавы, которые маркируют МЛ1...МЛ19. Буквы обозначают принадлежность данного сплава к литейным магниевым сплавам, цифры— порядковый номер сплава.
Магниевые сплавы имеют высокие временное сопротивление (150—350 МПа), относительное удлинение (3—9%) и твердость (НВ 30—70). Магниевые сплавы хорошо работают при динамических нагрузках, имеют удовлетворительную коррозионную стойкость, способны работать с высокими нагрузками при температурах 200—300° С. Механические свойства магниевых сплавов значительно повышаются после упрочняющей термической обработки.
Вместе с тем магниевые сплавы имеют пониженную жидкотекучесть, повышенную усадку, склонны к образованию трещин, хорошо растворяют водород, склонны к самовозгоранию при плавке и заливке литейных форм.
Магниевые сплавы плавят в тигельных электрических печах сопротивления и индукционных печах промышленной частоты и др. Для плавки используют стальные тигли.
В качестве шихтовых материалов применяют чушковый магний и алюминий, отходы собственного производства, лигатуры, флюсы.
Отливки из магниевых сплавов изготовляют литьем в песчаные формы, в кокиль, литьем под давлением и другими способами.
При литье в песчаные формы для предупреждения усадочных раковин и пористости на тепловые узлы отливок устанавливают прибыли и применяют холодильники.
При изготовлении магниевых отливок в кокиль основная трудность—это борьба с горячими трещинами. Эффективное средство борьбы с трещинами при кокильном литье магниевых сплавов—высокая температура кокилей (250—350° С) и металлических стержней (300—450° С). Направленное затвердевание обеспечивается установкой прибылей и нанесением, теплоизоляционных красок.
Отливки из магниевых сплавов широко используют в автомобильной промышленности, текстильном машиностроении, приборостроении, авиационной и ракетной технике и др. Из этих сплавов изготовляют корпуса насосов, детали арматуры, бензомасляную аппаратуру, корпуса приборов, корпуса тормозных барабанов, колеса и т. п.