
- •1.3. Механическое взаимодействие отливки и формы. Дефекты в отливках, возникающие в результате этого взаимодействия. Меры их предупреждения.
- •1.5. Термические и химические взаимодействие отливки и формы. Дефекты в отливках, возникающие в результате этого взаимодействия. Меры их предупреждения.
- •1.6. Изготовление отливок в песчаные формы. Технологические возможности способа.
- •1.9. Изготовление отливок методом центробежного литья. Технологические возможности способа.
- •1.7.Изготовление отливок литьем в кокиль. Технологические возможности способа.
- •1.8. Изготовление отливок под давлением. Технологические возможности способа.
- •1.10. Изготовление отливок по выплавляемым моделям. Технологические возможности способа.
- •1.11. Изготовление отливок из серого чугуна(маркировка, свойства, форма графита и особенности изготовления отливок).
- •1.13. Изготовление отливок из ковкого чугуна(маркировка, свойства, форма графита и особенности изготовления отливок).
- •1.14. Изготовление отливок алюминиевых сплавов(маркировка, свойства, форма графита и особенности изготовления отливок).
- •1.15. Изготовление стальных отливок(маркировка, свойства, форма графита и особенности изготовления отливок).
- •1.16. Изготовление отливок из магниевых сплавов(маркировка, свойства, форма графита и особенности изготовления отливок).
- •2.10.11.13.15.16. Возможные способы улучшения качества стали при разливке. Схема. Сущность способов.
- •2.8. Непрерывная разливка стали. Схема, преимущества непрерывной разливки по сравнению с разливкой в изложницы.
- •2.2. Основные металлургические законы и их роль в процессе производства стали и электродуговых печах.
- •2.3. Производство стали в мартеновских печах. Основные этапы при получении стали. Качество стали.
- •2.4. Производство стали в кислородном конвертере. Схема конвертера. Особенности процессов, происходящих в период плавки. Раскисление стали.
- •2.5. Строение слитка спокойной стали(эскиз стали, особенности кристаллизации)
- •2.6. Строение слитка кипящей стали, области применения кипящей стали
- •3.12 Способы получения труб обработкой давления, область рационального применения, особенности получаемой продукции
- •3.19 Формоизменяющие операции листовой штамповки вытяжка, формовка, отбортовка, их схемы и технологические возможности
- •3.4-5 Холодная и горячая деформация. Нагрев металла при обработке давлением : дефекты, возможные при нагреве заготовок.
- •3.2,5-7.Влияние схемы напряженного состояния на пластичность и сопротивление деформированного сплава.
- •4.19. Способы и технологические особенности сварки тугоплавких сплавов(на основе Ti, w, Mo)
- •4.12. Сущность схемы и технологические возможности основных видов контактной сварки.
- •4.16. Способы и технологические особенности сварки алюминиевых и магниевых сплавов. Виды дефектов. Способы их устранения.
- •4.17. Сущность, схема, технологические возможности лучевых способов сварки.
- •4.15. Сущность, схема, технологические возможности диффузионной сварки в вакууме.
- •4.13. Сущность схемы и технологические возможности электрошлаковой сварки.
- •4.11. Способы и технологические особенности сварки низко и среднелегированных сталей. Виды дефектов, способы их устранения.
- •4.9. Сущность схемы и технологические возможности основных видов дуговой сварки.
- •4.7. Дефекты в сварных соединениях. Возникновение горячих и холодных трещин. Методы их устранения.
- •4.6. Влияние остаточных напряжений и деформаций на форму и размеры сварных конструкций. Способы уменьшения остаточных напряжений и деформаций
- •4.2. Понятие о свариваемости и ее показателях. Способы повышения качества сварных конструкций.
- •4.13. Сущность схемы и технологические возможности основных видов контактной сварки тонколистовых конструкций.
- •4.3. Свариваемость металлов и сплавов. Основные дефекты в сварных соединениях. Способы повышения качества сварных конструкций.
- •4.1. Понятие о технологичности сварных конструкций. Критерии технологичности. Методы технологичности.
- •4.4. Возникновение временных и остаточных напряжений и деформаций при сварке. Причины возникновения и способы их снижения.
1.13. Изготовление отливок из ковкого чугуна(маркировка, свойства, форма графита и особенности изготовления отливок).
Ковкий чугун получают путем длительного отжига отливок из белого чугуна. При отжиге образующийся графит приобретает компактную, хлопьевидную форму. На рис. 4.40 показаны схемы микроструктур белого (а) и ковкого (б, в) чугунов.
Ковкий чугун маркируют КЧЗО-6, КЧЗЗ-8, КЧ35-10, КЧ37-12 и т. д. (всего девять марок). Буквы обозначают принадлежность данного сплава к ковкому чугуну, первые две цифры показывают временное сопротивление, вторые — одна или две — относительное удлинение.
Ковкий чугун обладает высоким временным сопротивлением (300—630 МПа), относительным удлинением (2— 12%) и твердостью (НВ 149—269); высокими износостойкостью и сопротивлением ударным нагрузкам, хорошо обрабатывается резанием.
По составу металлической массы ковкий чугун может быть ферритным или перлитным. Последний обладает высоким временным сопротивлением, но меньшей пластичностью.
Одной из особенностей технологии получения отливок из ковкого чугуна является то, что исходный материал — белый чугун имеет пониженную жидкотекучесть, это требует повышенной температуры заливки при изготовлении тонкостенных отливок. Усадка белого чугуна значительно больше, чем серого, поэтому в отливках из белого чугуна образуется больше усадочных раковин, пористости и трещин.
При производстве отливок чугун плавят дуплекс-процессом (вагранка + дуговая или индукционная печь), что позволяет нагревать чугун до температуры 1500—1550° С и доводить его химический состав. Для сокращения отжига белый чугун модифицируют алюминием, бором, висмутом.
Отливки из белого чугуна преимущественно изготовляют в песчаных формах, а также в оболочковых формах и кокилях.
Из ковкого чугуна изготовляют отливки массой от нескольких граммов до 250 кг с толщиной стенок 3—50 мм для автомобилестроения (ступицы колес, кронштейны, рычаги, коробки дифференциалов, корпуса сцепления и др.); для сельскохозяйственного машиностроения (детали шасси, корпусные детали, рычаги, кронштейны) и для других отраслей.
1.14. Изготовление отливок алюминиевых сплавов(маркировка, свойства, форма графита и особенности изготовления отливок).
Для изготовления отливок используют алюминиевые сплавы АЛ1, АЛ2, АЛЗ и т. д. Буквы обозначают принадлежность данного сплава к литейным алюминиевым сплавам, цифры — порядковый номер сплава.
Алюминиевые сплавы имеют высокие временное сопротивление (150—340 МПа), относительное удлинение (1,5— 12%) и твердость (НВ 50—90). Кроме того, сплавы АЛ1, АЛ21 и другие имеют высокую теплопрочность, сплавы АЛ8, АЛ13 и другие — повышенную коррозионную стойкость и хорошо работают при вибрационных нагрузках.
Силумины (сплавы АЛ2, АЛ4, АЛ9) имеют высокую жидкотекучесть, малую усадку (0,8—1,1%) , не склонны к образованию горячих и холодных трещин, потому что они по химическому составу близки к эвтектическим сплавам (интервал кристаллизации 10—30° С). Большинство остальных алюминиевых сплавов имеют низкую жидкотекучесть, повышенную усадку, склонны к образованию трещин, в расплавленном состоянии хорошо поглощают водород. Для плавки алюминиевых сплавов используют камерные стационарные или поворотные электрические печи сопротивления, индукционные печи промышленной частоты и др.
Отливки из алюминиевых сплавов преимущественно изготовляют литьем в кокиль, под давлением, в песчаные формы.
Отливки из алюминиевых сплавов широко используют в авиационной и ракетной технике, автомобильной, приборостроительной, машиностроительной, судостроительной и электротехнической промышленности. Из алюминиевых сплавов изготовляют блоки двигателей внутреннего сгорания, головки блоков, корпуса насосов, судовые винты, авиационные детали, детали электро- и радиоаппаратуры и др.