
- •1.3. Механическое взаимодействие отливки и формы. Дефекты в отливках, возникающие в результате этого взаимодействия. Меры их предупреждения.
- •1.5. Термические и химические взаимодействие отливки и формы. Дефекты в отливках, возникающие в результате этого взаимодействия. Меры их предупреждения.
- •1.6. Изготовление отливок в песчаные формы. Технологические возможности способа.
- •1.9. Изготовление отливок методом центробежного литья. Технологические возможности способа.
- •1.7.Изготовление отливок литьем в кокиль. Технологические возможности способа.
- •1.8. Изготовление отливок под давлением. Технологические возможности способа.
- •1.10. Изготовление отливок по выплавляемым моделям. Технологические возможности способа.
- •1.11. Изготовление отливок из серого чугуна(маркировка, свойства, форма графита и особенности изготовления отливок).
- •1.13. Изготовление отливок из ковкого чугуна(маркировка, свойства, форма графита и особенности изготовления отливок).
- •1.14. Изготовление отливок алюминиевых сплавов(маркировка, свойства, форма графита и особенности изготовления отливок).
- •1.15. Изготовление стальных отливок(маркировка, свойства, форма графита и особенности изготовления отливок).
- •1.16. Изготовление отливок из магниевых сплавов(маркировка, свойства, форма графита и особенности изготовления отливок).
- •2.10.11.13.15.16. Возможные способы улучшения качества стали при разливке. Схема. Сущность способов.
- •2.8. Непрерывная разливка стали. Схема, преимущества непрерывной разливки по сравнению с разливкой в изложницы.
- •2.2. Основные металлургические законы и их роль в процессе производства стали и электродуговых печах.
- •2.3. Производство стали в мартеновских печах. Основные этапы при получении стали. Качество стали.
- •2.4. Производство стали в кислородном конвертере. Схема конвертера. Особенности процессов, происходящих в период плавки. Раскисление стали.
- •2.5. Строение слитка спокойной стали(эскиз стали, особенности кристаллизации)
- •2.6. Строение слитка кипящей стали, области применения кипящей стали
- •3.12 Способы получения труб обработкой давления, область рационального применения, особенности получаемой продукции
- •3.19 Формоизменяющие операции листовой штамповки вытяжка, формовка, отбортовка, их схемы и технологические возможности
- •3.4-5 Холодная и горячая деформация. Нагрев металла при обработке давлением : дефекты, возможные при нагреве заготовок.
- •3.2,5-7.Влияние схемы напряженного состояния на пластичность и сопротивление деформированного сплава.
- •4.19. Способы и технологические особенности сварки тугоплавких сплавов(на основе Ti, w, Mo)
- •4.12. Сущность схемы и технологические возможности основных видов контактной сварки.
- •4.16. Способы и технологические особенности сварки алюминиевых и магниевых сплавов. Виды дефектов. Способы их устранения.
- •4.17. Сущность, схема, технологические возможности лучевых способов сварки.
- •4.15. Сущность, схема, технологические возможности диффузионной сварки в вакууме.
- •4.13. Сущность схемы и технологические возможности электрошлаковой сварки.
- •4.11. Способы и технологические особенности сварки низко и среднелегированных сталей. Виды дефектов, способы их устранения.
- •4.9. Сущность схемы и технологические возможности основных видов дуговой сварки.
- •4.7. Дефекты в сварных соединениях. Возникновение горячих и холодных трещин. Методы их устранения.
- •4.6. Влияние остаточных напряжений и деформаций на форму и размеры сварных конструкций. Способы уменьшения остаточных напряжений и деформаций
- •4.2. Понятие о свариваемости и ее показателях. Способы повышения качества сварных конструкций.
- •4.13. Сущность схемы и технологические возможности основных видов контактной сварки тонколистовых конструкций.
- •4.3. Свариваемость металлов и сплавов. Основные дефекты в сварных соединениях. Способы повышения качества сварных конструкций.
- •4.1. Понятие о технологичности сварных конструкций. Критерии технологичности. Методы технологичности.
- •4.4. Возникновение временных и остаточных напряжений и деформаций при сварке. Причины возникновения и способы их снижения.
1.5. Термические и химические взаимодействие отливки и формы. Дефекты в отливках, возникающие в результате этого взаимодействия. Меры их предупреждения.
Тепловое воздействие металла на форму. В процессе заливки, затвердевания и охлаждения металл отдает теплоту литейной форме конвекцией, излучением и посредством теплопроводности. Чем дольше протекает металл по определенным участкам формы и находится в них в жидком состоянии, тем сильнее прогревается поверхность формы и тем медленнее остывает расплав. В результате прогрева формы на поверхности контакта ее с металлом интенсивно развиваются тепловые, физико-химические и механические процессы, протекающие в период заливки, затвердевания и охлаждения металла. Вследствие этих процессов на поверхности отливки образуется пригар, который представляет собой трудно отделимый от поверхности отливки слой из металла, его оксидов и частичек формовочной смеси. Пригар ухудшает поверхность отливки, увеличивает трудоемкость ее очистки, снижается стойкость инструмента при обработке резанием. Различают химический и механический пригар. Химический пригар образуется на отливках в период соприкосновения формы с полузатвердевшем ме, еще имеющим высокую температуру. Появлению химического пригара способствует наличие в формовочной смеси оксидов щелочных и щелочноземельных металлов, образующих с оксидом железа силикаты с низкой температурой плавления. Эти силикаты могут проникать между песчинками, образуя пригарную корку.
Для уменьшения химического пригара применяют формовочные смеси с минимальным содержанием оксидов щелочных и щелочноземельных металлов; в зависимости от сплава вокруг отливки создают либо восстановительную, либо окислительную атмосферу; рабочую поверхность формы покрывают противопригарными покрытиями.
Механический пригар образуется вследствие механического проникания жидкого металла между песчинками на поверхности формы и стержней под действием напора жидкого металла и капиллярных сил в процессе его заливки и затвердевания. Этот вид пригара трудно удаляется с поверхности отливки из-за образования; прочной корки, состоящей из формовочной смеси, пропитанной металлом.
Для устранения механического пригара снижают температуру заливки металла окрашивают формы защитными покрытиями; используют облицовочные смеси и т. д.
Кристаллизация сплавов в форме. Залитый в литейную форму металл при охлаждении начинает кристаллизоваться, т. е. образуются кристаллы при переходе из жидкого состояния в твердое. Для образования кристаллов из расплава необходимы зародыши или центры кристаллизации, которые могут образовываться самопроизвольно; в качестве центров кристаллизации могут служить примеси, образующиеся в расплаве из продуктов реакций плавки металла в печи. Условия протекания кристаллизации определяют структуру и свойства сплава и отливки. Чем больше центров кристаллизации тем мельче будут кристаллы и наоборот Структура отливок расплава в форму и охлаждения отливки в форме; интервала кристаллизации и других факторов. Зная влияние различных факторов на процесс кристаллизации сплавов, можно направление изменять кристаллическое строение отливок, улучшая их свойства
1.4. Понятие об усадке сплавов. Механизм образования усадочных раковин и усадочной пористости. Технологические и конструктивные мероприятия по предупреждению образования усадочных раковин и пористости в отливках. Усадка — свойство литейных сплавов уменьшать объем при затвердевании и охлаждении. Усадочные процессы в отливках протекают с момента заливки расплавленного металла в форму вплоть до полного охлаждения отливки. Различают линейную и объемную усадку, выражаемую в относительных единицах.
Усадочные раковины — сравнительно крупные полости, расположенные в местах отливки, затвердевающих последними. Сначала около стенок литейной формы образуется корка 7 твердого металла. Вследствие того, что усадка расплава при переходе из жидкого состояния в твердое превышает усадку корки, уровень металла в не затвердевающей части отливки понижается до определенного уровня. В следующий момент времени на корке нарастает новый твердый слой, а уровень жидкости далее понижается до уровня. Так продолжается до тех пор, пока не закончится процесс затвердевания. Снижение уровня расплава при затвердевании приводит к образованию сосредоточенной осадочной раковины. Сосредоточенные усадочные раковины образуются при изготовлении отливок из чистых металлов, сплавов эвтектического состава (сплав АЛ2) и сплавов с узким интервалом кристаллизации (низкоуглеродистые стали, безоловянные бронзы и др.).
Усадочная пористость — скопление пустот, образовавшихся в отливке в обширной зоне в результате усадки в тех местах отливки, которые затвердевали последними без доступа, к ним расплавленного металла. Вблизи температуры солидуса кристаллы срастаются друг с другом. Это приводит к разобщению ячеек, заключающих в себе остатки жидкой фазы. Затвердевание небольшого объема металла в такой ячейке происходит без доступа к ней питающего расплава из соседних ячеек. В результате усадки в каждой ячейке получается небольшая усадочная раковина. Множество таких межзеренных микроусадочных раковин образует пористость, которая располагается по границам зерен металла.
Получить отливки без усадочных .раковин и пористости возможно за счет непрерывного подвода расплавленного металла в процессе кристаллизации вплоть до полного затвердевания. С этой целью на отливки устанавливают прибыли-резервуары с расплавленным металлом, которые обеспечивают доступ расплавленного металла к участкам отливки, затвердевающим последними. Прибыль не может обеспечить доступ расплавленного металла к утолщенному участку отливки. В этом месте образуются усадочная раковина и пористость. Установка да утолщенный участок прибыли предупреждает образование усадочной раковины и пористости. Предупредить образование усадочных раковин и пористости позволяет установка в литейную форму наружных холодильников или внутренних холодильников.