
- •1.Исходные принципы проектирования тп. Виды тп
- •2. Виды технологических процессов
- •Технологическая классификация оборудования
- •4. Технологическая классификация оборудования
- •Концентрация и дифференциация операций тп
- •5. Концентрация и дифференциация схем станочных операций
- •Виды операции и этапы тп
- •Исходные данные для разработки тп
- •Стадии разработки тп. Связи между чертежом и тп
- •Методика составления плана процесса
- •Назначение первой операции и выбор баз для первой обработки
- •Выбор главной базы
- •14. Разработка операций тп
- •10. Выбор баз в условиях отказа от совмещения баз
- •11. Условие наименьшей погрешности при несовмещении баз
- •12. Правило единой технологической базы
- •13. Принцип постоянства баз
- •15.Обработка связки крепежных отверстий
- •16.Обработка отверстия параллельного плоскости
- •17. Обработка связки соосных отверстий
- •18. Конструктивно-технологические требования к оправам
- •20. Предварительная токарная боработка. Групповая обработка.
- •19. Общие этапы тп изготовления оправ и тубусов
- •21. Обработка вспомогательных поверхностей
- •22. Окончательная обработка базирующих и рабочих поверхностей в одной оперрации
- •23. Окончательная обработка базирующих и рабочих поверхностей за две операции
- •24. Нарезание окулярной резьбы
- •25. Контроль оправ и тубусов
- •26 И 27 Контрольпараллельности и пепендикулярности автоколлимационным методом
- •28. Особенности проектирования тп сборки
- •1 И 2. Компенсация децентрировок линзы по блику и автоколлиматору Центрирование линзы по блику
- •Центрирование линзы по автоколлиматору
- •Особенностью автоколлимационного метода
- •Центрирование линз с контролем по биению автоколлимационного блика.
- •3.Центрирование линз в самоцентрирующем патроне
- •4. Центрирование линз по прибору
- •5 И 6 Центрирование линзы в оправе трубкой Зебелина
- •Центрирование с помощью автоколлиматора
- •Устройство автоколлимационной трубки юс-13
- •Устройство центрирующего патрона
- •О выборе патрона и о расчете оправок
- •Процесс центрирования
- •Определение методической погрешности способа центрирования
- •6)Поправить оси
- •7. Схемы к вычислению угла и расстояния между оптической осью и осью оправы Определение расстояния
- •Определение угла
- •Определение истинного расположения расстояния
- •Общая оценка рассмотренных способов центрирования
- •8. Конструктивные методы компенсации децентрировок: плоско-выпуклая линза
- •9. Конструктивные методы компенсации децентрировок: двояко-выпуклая линза
- •10. Конструктивные методы компенсации децентрировок: мениск
- •11. Характеристики соединения деталей
- •Показатели качества
- •17. Принцип силового замыкания
- •12. Классификация свойств в контактных парах
- •Классификация элементарных контактных пар
- •13. Основы базирования соединения при сборке
- •14. Геометрическая неопределенность контактных пар
- •15. Принцип совмещения рабочего элемента (рэ) в соединении детали
- •Б) без нарушения;
- •16. Принцип геометрической определенности контактных пар
- •18. Принцип определения смещения в соединении
- •20. Принцип ограничения продольных и поперечных вылетов рэ
- •21. Учет тепловых свойств соединяемых деталей
- •19. Принцип ограничения поворотов
15. Принцип совмещения рабочего элемента (рэ) в соединении детали
При конструировании соединений предпочтительной является конструкция, позволяющая осуществлять контакт сопрягаемых деталей по их рабочим элементам. В этом случае происходит объединение рабочего и базового элементов присоединяемой детали, уменьшается размерная цепь и повышается точность расположения РЭС относительно БЭС.
Например, в случае расположения
штрихов лимба на поверхности Г (см. рис.
2.17, а)
принцип выполняться не будет, так как
рабочий элемент (поверхность D)
базовой детали (валика) не совмещен с
рабочим элементом присоединяемой
детали. В случае же расположения штрихов
лимба на поверхности В, по которой
происходит сопряжение лимба с поверхностью
(D)
валика, принцип
соблюдается, и можно утверждать, что
точность расположения РЭС относительно
БЭС (цапф валика) будет выше, чем в первом
случае.
Рис. 2.18. Пример установки зеркала: а) с нарушением принципа соединения РЭ;
Б) без нарушения;
Деталь 1 будет технологичней, так как не нужно выдерживать строгий допуск на ее клиновидность по сравнению с первым вариантом.
На рис. 2.18 изображена
конструкция соединения зеркала 1 с
кронштейном 2. Конструкция, изображенная
на рис. 2.18, б,
позволяет точнее ориентировать отражающую
поверхность зеркала (РЭС) относительно
основания кронштейна (БЭС) и не требует
жесткого допуска на клиновидность
зеркала по сравнению с конструкцией,
изображенной на рис. 2.18, а. Кроме того,
в конструкции на рис. 2.18, б
уменьшен продольный вылет L,
а на рис. 2.19 L=0.(
подробнее о вылете см. ниже)
На рис.2.19 показано совмещение РЭ и БЭ, применена выборка для геометрической определенности, и уменьшено до нуля расстояние L от РЭС до центра поворота С.
Рис. 2.19. Пример применения трех принципов конструирования в одном соединении
16. Принцип геометрической определенности контактных пар
Этот принцип заключается
в определенности положения и формы
контакта сопрягаемых поверхностей
деталей. Реальные поверхности деталей
имеют макро и микро погрешности формы
поверхностей. В результате детали
контактируют друг с другом не по линиям
и поверхностям, а по пятнам (площадкам)
неопределенной формы, размеры и положение
которых в сопряжении также неопределенны.
Рис. 2.20. Выполнение геометрической определенности при базировании зеркал
Эта неопределенность снижает точность расположения присоединяемой детали и несущую способность базовой детали. Наибольшее влияние на точность оказывает неопределенность расположения пятен контакта.
На рис.2.20, а изображено соединение зеркала 1 с оправой 2 с помощью трех угольников. Из-за погрешностей формы сопрягаемых поверхностей зеркала и оправы их контакт будет происходить не по плоскости, а по трем площадкам, расположение и форма которых могут быть произвольными в пределах сопрягаемых поверхностей. В результате возникает объемная деформация зеркала под действием сил Fсо стороны угольников и реакцииRсо стороны оправы, приводящая к порче качества изображения.
Соединение, изображенное на рис.2.20, б, обладает определенностью расположения площадок контакта, благодаря специальным выборкам (либо прокладкам) на оправе. Здесь возникает только контактная деформация зеркала в пределах контактирующих зон, не приводящая к ухудшению качества изображения.
Рис. 2.21. Создание определенности базирования выборкой.
Неопределенность расположения и формы контакта цилиндрической оси вращения с подшипником (рис. 2.21, а) не позволяет определить базу В между элементами поверхности, ограничивающими ее наклоны вокруг координатных осейX,Y; требует тщательной обработки всей поверхности и отсутствия бочкообразности. Выборка на поверхности оси (рис. 2.21,б) приводит к соблюдению рассматриваемого принципа и позволяет избежать упомянутые недостатки конструкции соединения. Тоже и на рис.2.21, в для конической поверхности.