- •Описание технологической схемы выпарной установки:
- •2.3.2 Определение температурной депрессии в II корпусе
- •2.4 Суммарная полезная разность температур и ее предварительное распределение
- •2.5 Определение параметров ведения процесса в корпусах
- •2.6 Расчет потоков w1 и w2 выпаренной воды в корпусах:
- •2.8.3 Расчет величин в01 и в02
- •2.8.4 Расчет поверхности теплообмена
- •3. Расход греющего пара
- •4. Расчет барометрического конденсатора
- •Список литературы
МИНОБРНАУКИ РОССИИ
Федеральное государственное бюджетное образовательное учреждение высшего образования
«МИРЭА – Российский технологический университет»
РТУ МИРЭА
|
Институт тонких химических технологий им. М.В. Ломоносова |
|
(наименование Института)
|
Кафедра процессов и аппаратов химической технологии |
|
(наименование кафедры)
Домашнее задание на тему:
Расчет двухкорпусных выпарных установок
Вариант 4
Работу выполнил
Студент группы ХББО-03-16
Гуськов Дмитрий Анатольевич
Москва, 2019
Дано:
Рассчитать двухкорпусную выпарную установку непрерывного действия для выпаривания S0=10000 кг/ч раствора NaCl от начальной концентрации a0=10% масс. до конечной концентрации a2=30% масс. Слабый раствор соли подогревается в теплообменнике до t0=90°C. Давление греющего пара Pгп=4 атм. Из I корпуса отводится поток экстра- пара Е1=400 кг/ч. Вакуум во II корпусе составляет Pвак=660 мм.рт.ст. Выпарная установка обслуживается барометрическим конденсатором смешения, питающегося водой с температурой tв’=18°C.
Оба корпуса выпарной установки изготавливаются из стали марки ОХ21Н5Т (теплопроводность такой стали λст =17,2 Вт/(м К))
Найти:
-
Расход греющего пара Dгр в в выпарном аппарате;
-
Поверхности теплообмена двух корпусов (при F F2 F1);
-
Расход охлаждающей воды в конденсаторе;
-
Диаметр и высоту барометрической трубы.
Описание технологической схемы выпарной установки:
Водный раствор хлорида натрия с параметрами S0=10000 кг/ч; a0=10% масс. поступает в трубное пространство подогревателя (П), где он за счет теплоты конденсации греющего пара Pгп=4 атм, подаваемого в межтрубное пространство, нагревается до температуры t0=90°C. Подогретый раствор поступает в I корпус, обогреваемый греющим паром. Раствор в трубах кипит при температуре t1 и в виде смеси (пар + жидкость) поступает в сепарационное пространство, где происходит ее разделение на вторичный пар W1 с параметрами θ1; h1 и упаренный раствор S1 с параметрами t1, a1, которые выводятся из корпуса.
Упаренный раствор из I корпуса переходит во II корпус. Во II корпусе происходит его дальнейшее упаривание до заданной конечной концентрации ак = а2 за счет теплоты конденсации вторичного пара, поступающего из I корпуса. Часть вторичного пара из I корпуса в виде экстра-пара E идет на производственные нужды. Циркуляция раствора в аппарате естественная.
Вторичный пар W2 из II корпуса с параметрами θ2; i2 поступает в барометрический конденсатор смешения, где он, контактируя с водой, конденсируется, значительно уменьшая свой объем, в результате чего образуется вакуум (рисунок 1.1).
Рисунок 1.1. Технологическая схема выпарной установки
1. Расчет выпарной установки
1. Подготовка расчетов
1.2 Перевод в СИ
Ргп бар
P2
2. Расчет выпарных аппаратов
2.1 Общее количество выпаренной воды
Проверка:
(ошибка в 0,001 за счет округлений)
2.2 Концентрации растворов по корпусам
2.3 Определение температурных депрессий
2.3.1 Определение температурной депрессии в I корпусе
Температурную депрессию в I корпусе находим как стандартную, строя график (рисунок 2.1) из табличных значений, заполняем таблицу 2.1.
Таблица. 2.1. Температурные депрессии раствора NaCl при различных концентрациях под атмосферным давлением
Растворенное вещество |
Температура кипения, |
|||||
101 |
102 |
103 |
104 |
105 |
107 |
|
δ |
6,19 |
11,03 |
14,67 |
17,69 |
20,32 |
25,09 |
Температурная депрессия в I корпусе составляет: =3,2[°С].
Рисунок. 2.1. График зависимости температуры кипения раствора NaCl при различных концентрациях под атмосферным давлением.
2.3.2 Определение температурной депрессии в II корпусе
При концентрации a2=30% масс. температура кипения раствора при атмосферном давлении равна =109,3 °С, следовательно, =9,3 °С. Депрессия при малом давлении Р2 (во II корпусе) меньше стандартной и может быть рассчитана по правилу Бабо:
Давление насыщенных паров воды при температуре кипения раствора =109,3°С (при стандартных условиях бар) составляет =.
Константа Бабо равна:
По этому давлению в таблицах для насыщенного водяного пара находим температуру кипения раствора во II корпусе =58,5 °C.
Поскольку температура вторичного пара во II корпусе определяется по = бар и равна θ2=51,9°C, то температурная депрессия, найденная по правилу Бабо равна . Поправкой Стабникова не пользуемся.
Гидравлическую депрессию при переходе вторичного пара из I корпуса во II корпус принимаем .