Добавил:
Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл: Источник:
Скачиваний:
263
Добавлен:
04.03.2014
Размер:
2.18 Mб
Скачать

Нормальный закон распределения (закон Гаусса)

Этот закон является одним из наиболее распространенных законов распределения погрешностей, что объясняется центральной предельной теоремой теории вероятностей.

Центральная предельная теорема ТВ - распределение случайных погрешностей будет близко к нормальному всякий раз, когда результаты наблюдения формируются под влиянием большого числа неравномерно действующих факторов, каждый из которых оказывает лишь незначительное действие по сравнению с суммарным действием всех остальных.

Пример:

1. равноценные (50х50)

2. неравноценные (если событий >5)

3. незначительные по сравнению с сумарным действием.

Закон Гаусса имеет следующее выражения:

MX - математическое ожидание, оно является центром группирования результатов наблюдения.

G - среднеквадратичное отклонение характеризует величину рассеивания результатов наблюдений, т.е. точность измерения.

Центральный момент первого порядка.

Сколько бы не измеряли все моменты располагаются около МХ при n.

Центральный момент второго порядка.

ДХ – дисперсия

- характеризует величину рассеивания результатов наблюдения.

Дисперсия – математическое ожидание квадрата отклонения случайной величины от квадрата ее математического ожидания.

В практике неизвестно МХ, поэтому:

- смещенная характеристика поскольку ее математическое ожидание

- несмещенная характеристика дисперсии.

Так как среднее арифметическое вычисляется по результатам отдельных наблюдений, то является тоже случайной величиной и характеризуется своим эмпирическим средне квадратическим отклонением

Видно, что эмпирическое среднее квадратическое отклонение среднего арифметического значения в раз меньше эмпирического среднего квадратического отклонения, (т.е. точность среднего арифметического значения враз выше точности единичного измерения). Поэтому на практике за результат измерения принимают , а не результат отдельного измерения, что позволяет уменьшить в раз случайную составляющую погрешности измерения.

ЗнаяMX и G , можно с определенной вероятностью определить диапазон рассеивания результатов наблюдений .

где z - коэффициент равный значению функции Лапласа.

68% - доверительная вероятность

В этом интервале лежат 68% всех размеров, среднеквадратическое отклонение является 68% или доверительным интервалом.

95% - в промышленности 99.73% - в научных исследованиях

Доверительный интервал, интервал в котором мы ожидаем размер.

Доверительная вероятность - вероятность того, что размеры деталей или результаты измерения окажется внутри доверительного интервала.

За оценку случайной погрешности результата измерений принимают доверительный интервал среднего арифметического.

Случайные погрешности, > 3G , считаются грубыми и исключаются из результата измерения.

При малом n используют коэффициент Стьюдента, где

При n распределение Стьюдента переходит в нормальное распределение, чем больше n, тем меньше коэф. Стьюдента, интервал с заданной вероятностью уменьшается

, P= , n=

Билет №17

1.Переходные посадки, схемы расположения полей допусков переходных посадок в системе вала. Показать, как изменятся Smax, Smin, Sm(Nm), TSN при изменении допусков соединяемых деталей на один квалитет. Примеры обозначения на чертежах переходных посадок в системе вала.

Понятие о посадках.

Посадкой называется характер соединения деталей, определяемый величиной зазора или натяга.

Зазор – разность размеров отверстия и вала, если размер отверстия больше размера вала.

Подвижные соединения характеризуются наличием зазоров.

Натяг – разность размеров вала и отверстия до сборки, если размер вала больше размера отверстия.

Неподвижные соединения характеризуют, как правило, наличием натяга.

Существуют три типа посадок: с зазором, с натягом и преходящие.

Посадки с зазором.

Посадка с зазором – посадка, при которой обеспечивается зазоры в соединениях.

Smax = Dmax – dmin = ES – ei Smin = Dmin – dmax = EI - es

, Ts = Smax – Smin = TD + Td

К посадкам с зазором относятся текже посадки, в которых нижняя граница поля допуска отверстия совпадает с верхней границей поля допуска вала, т.е. Smin = 0.

Соседние файлы в папке Шпоры Word