- •П.С. Котенко "Бортовые комплексы навигации и самолётовождения" ( лекции и перечень вопросов).
- •1. Приведите классификацию летательных аппаратов с точки зрения решаемых задач бкнс и расскажите об основных особенностях каждого класса.
- •2. Наземное оборудование используется для радиотехнических систем ближней навигации (назначение, состав, выполняемые функции, тип, характеристики).
- •3. Наземное оборудование радиотехнических систем посадки (назначение, состав, выполняемые функции, тип, характеристики).
- •4. Наземное оборудование радиотехнических систем увд (назначение, состав, выполняемые функции, тип, характеристики)
- •5. Наземное оборудование радиотехнических систем дальней и глобальной навигации (назначение, состав, выполняемые функции, тип, характеристики).
- •6. Классы аэродромов (технические характеристики).
- •8. Метеоминимум для посадки категории, II (требования icao).
- •- Сдвоенный или контролируемый высотомер геометрической высоты (радиовысотомер) с возможностью выставки впр.
- •9. Метеоминимум для посадки категории iiia, iiiв, iiiс (требования icao).
- •Категория iiic характеризуется отсутствуют ограничения по дальности горизонтальной видимости и по высоте принятия решения.
- •10. Системы горизонтального, вертикального и продольного эшелонирования воздушных судов (нормы icao).
- •11. Требования ап-25, раздел f и приложения п25f. Нлгс к составу пилотажно-навигационного оборудования, устанавливаемого на различных самолетах.
- •12. Общая характеристика документов серии arinc-700 (классификация, требования к конструктивному исполнению, к распределению входных и выходных электрических сигналов).
- •13. Факторы, определяющие выбор конкретного состава оборудования и критерии его оптимизации.
- •14. Авиагоризонты и гировертикали, основные и резервные (назначение, состав, выполняемые функции, типы, характеристики).
- •15. Курсовые системы, основные и резервные (назначение, состав, выполняемые функции, типы, характеристики).
- •16. Инерциальные курсовертикали (назначение, состав, выполняемые функции, типы, характеристики).
- •18. Инерциальная система и-21, как аналог Litton-72 (назначение, состав, выполняемые функции, технические характеристики).
- •Основные технические характеристики
- •19. Бесплатформенная лазерная навигационная система бинс-85(77), как аналог Litton-92 (назначение, состав, выполняемые функции, технические характеристики).
- •Основные технические характеристики бинс-л (бинс-77)
- •Основные технические характеристики бинс-85
- •Основные технические характеристики бинс-85
- •20. Общие требования к средствам определения воздушных параметров и нормативные требования к техническим характеристикам средств вертикального эшелонирования.
- •Требования ап-25 к определению воздушных параметров.
- •21. Барометрические высотомеры, указатели воздушной скорости и вариометры, основные и резервные приборы (назначение, требования енлгс, типы, выполняемые функции).
- •Требования ап-25 к определению воздушных параметров.
- •Требования ап – 25 к системам индикации воздушной скорости
- •22. Системы воздушных сигналов (зависимости для определения высоты, числа м и скорости, решаемые в вычислителях, состав, выполняемые функции, технические характеристики).
- •Основные технические характеристики
- •Основные технические характеристики
- •24. Информационные комплексы высотно-скоростных параметров (назначение, состав, типы, структурные схемы).
- •Основные технические характеристики
- •25. Системы предупреждения критических режимов, вкрс, ауасп, ссос (назначение, состав, выполняемые функции, технические характеристики).
- •26. Система предупреждения приближения земли сппз-85 (назначение, связи с другими системами, выполняемые функции)
- •27. Системы предупреждения критических режимов спкр-85 (назначение, связи с другими системами, выполняемые функции)
- •28. Интегральная система предупреждения критических режимов (назначение, функции, выполняемые различными вычислительными системами).
- •29. Астрономические системы, применяемые в авиации (назначение, выполняемые функции, типы, характеристики, основное уравнение астронавигации).
- •30. Астро-навигационная система анс-3 (а-829) (назначение, состав, выполняемые функции, технические характеристики).
- •31. Радиотехническое оборудование навигации, посадки и управления воздушным движением (классификация по выполняемым функциям и по измеряемым параметрам, основное уравнение рто).
- •32. Распределение частотного диапазона радиоволн между бортовыми устройствами (возможное число радиосредств, работающих в различных диапазонах).
- •33. Общие параметры рто (надежность, контролепригодность, масса, объем, потребляемая мощность, стоимость).
- •34. Автоматические радиокомпасы (назначение, требования енлгс, типы, выполняемые функции).
- •35. Автоматические радиокомпасы арк-22 и арк-25 (основные технические характеристики).
- •36. Радиотехнические системы ближней навигации рсбн (назначение, требования енлгс, типы, выполняемые функции, структурная схема взаимодействия наземной и бортовой аппаратуры)
- •37. Рсбн а-331 и рсбн-85 (основные технические характеристики).
- •38. Угломерная система vor (назначение, требования енлгс, выполняемые функции, структурная схема взаимодействия наземной и бортовой аппаратуры, основные технические характеристики)
- •39. Дальномерная система dme (назначение, требования енлгс, типы, выполняемые функции, основные технические характеристики)
- •40. Зональная навигация (принцип действия, схемы полетов, виды)
- •41.Радиотехническое оборудование посадки (назначение, требования енлгс, типы, выполняемые функции).
- •8.3.4.2.1. Радиотехническое оборудование посадки сп, ils.
- •8.3.4.2.2. Радиотехническое оборудование посадки mls.
- •8.3.4.3. Радиотехническое оборудование посадки дециметрового диапазона.
- •42. Система инструментальной посадки сп-50 (назначение, требования енлгс, выполняемые функции, структурная схема взаимодействия наземной и бортовой аппаратуры, основные технические характеристики).
- •43. Система инструментальной посадки ils (назначение, требования енлгс, выполняемые функции, структурная схема взаимодействия наземной и бортовой аппаратуры, основные технические характеристики).
- •44.Маркерный канал системы посадки (назначение, требования енлгс, выполняемые функции, структурная схема взаимодействия наземной и бортовой аппаратуры, основные технические характеристики).
- •45.Радиомаячные системы дециметрового диапазона «Катет» (назначение, требования енлгс, выполняемые функции, основные технические характеристики).
- •46. Радиомаячные системы сантиметрового диапазона mls (назначение, принцип действия, требования енлгс, выполняемые функции, размещение маяков).
- •47. Бортовая аппаратура управления воздушным движением (увд)
- •48. Самолетный ответчик со-72м
- •49. Самолетный ответчик оса-с (назначение, состав, выполняемые функции, технические характеристики).
- •50. Аппаратура системы предупреждения столкновения вс (назначение, требования енлгс, выполняемые функции, основные связи с взаимодействующей аппаратурой).
- •51. Система предупреждения столкновений «Эшелон»
- •52. Радиосистема дальней навигации «Loran-c» (назначение, требования енлгс, типы, выполняемые функции).
- •53. Рсдн «Omega» (назначение, состав, выполняемые функции, технические характеристики).
- •54. Рсдн а-723 (назначение, состав, выполняемые функции, технические характеристики)
- •55. Спутниковые навигационные системы (назначение, требования енлгс, типы, выполняемые функции).
- •56. Бортовое оборудование снс Navstar (gps) (назначение, состав, выполняемые функции, технические характеристики).
- •57. Дифференциальный режим gps (принцип действия, основные технические характеристики, область применения).
- •58. Радиовысотомеры малых высот рв (назначение, требования енлгс, типы, состав, выполняемые функции, технические характеристики).
- •Основные технические характеристики
- •61. Доплеровские измерители скорости и угла сноса дисс (назначение, требования енлгс, типы, состав, выполняемые функции, технические характеристики).
- •62. Дисс шо-13 (назначение, состав, выполняемые функции, технические характеристики).
- •63. Метеонавигационные радиолокационные станции мнрлс (уравнение радиолокации, назначение, требования енлгс, типы, выполняемые функции).
- •64. Мнрлс «Гроза» и «Буран» (назначение, состав, выполняемые функции, технические характеристики).
- •Основные технические характеристики
- •65. Мнрлс «Контур» (назначение, состав, выполняемые функции, технические характеристики).
- •66. Мнрлс-85 (назначение, состав, выполняемые функции, технические характеристики).
- •67. Системы экстремальной навигации с использование физических полей земли и рельефа местности.
- •68. Навигационные вычислительные системы (нвс) (назначение, требования енлгс, типы, выполняемые функции).
- •69. Нестандартные цифровые навигационные системы нвс-74 (назначение, состав, решаемые задачи, технические характеристики).
- •71. Стандартные навигационные вычислительные системы всс-85 (назначение, состав, выполняемые функции, технические характеристики).
- •72. Электромеханические системы отображения информации (назначение, требования енлгс, состав, выполняемые функции).
- •73. Экранные системы индикации (назначение, требования енлгс, состав, выполняемые функции).
- •74. Основные требования к авиационным сои.
- •75. Отечественные системы экранной индикации (состав, эволюция развития, структурные схемы, технические характеристики).
- •76. Зарубежные системы экранной индикации (состав, эволюция развития, структурные схемы, технические характеристики).
- •77. Содержание информации на индикаторах сэи.
- •78. Принципы комплексирования бортового оборудования
- •79. Комплекс «Купол» (состав, эволюция развития, структурная схема, технические характеристики).
- •80. Комплекс «Ольха-2» (состав, эволюция развития, структурная схема, технические характеристики).
- •81. Кспно-204/96 (состав, эволюция развития, структурная схема, технические характеристики).
- •82. Комплекс цпнк-114 (состав, эволюция развития, структурная схема, технические характеристики)
- •86. Комплекс кcпно-334 (основное отличие от кспно-204/96)
- •87. Основные принципы, заложенные в интегральной модульной авионике для перспективных самолетов
- •90. Интегрирование систем, выполненных по arinc-700 на современных самолетах.
56. Бортовое оборудование снс Navstar (gps) (назначение, состав, выполняемые функции, технические характеристики).
Система Navstar - разрабатывается в интересах Министерства обороны США. Предусматривается возможность использования системы гражданскими потребителями.
Созвездие НИСЗ (рис. 4.2), кроме 18 основных, включает три резервных спутника.
Фазы
спутников в соседних орбитальных
плоскостях отличаются на 40°. Каждый
НИСЗ будет проходить над одной и той же
точкой земной поверхности один раз в
звездные сутки (23 ч 55 мин 56,6 с). Сигналы
НИСЗ отличаются видом кодирования с
целью опознавания спутников и содержанием
служебной информации. Работа всех НИСЗ
с высокой точностью синхронизирована
с системой единого времени.
Командно-измерительный комплекс (рис.
4.2) предназначен для определения орбит
НИСЗ; измерения расхождения шкал времени
НИСЗ с системным временем; предсказания
эфемерид каждого НИСЗ и ухода бортового
времени; формирования массива служебной
информации и загрузки его в память
соответствующего спутника; телеметрического
контроля работы систем спутников и
диагностики их состояния, а также для
управления работой бортовых систем
спутников. В состав КИК входят
координационно-вычислительный центр
КВЦ, командно-измерительная станция
КИС, несколько станций слежения за
спут-никами ССС и станции загрузки
служебной информации СЗСИ.
Общие характеристики СНС Navstar
Тип созвездия (число орбит, количество спутников на каждой орбите, период обращения спутника): 6х3х12;
Место: формирования эфемерид КИК
определения координат НИСЗ АП
формирования навигационного сигнала НИСЗ
решения навигационных задач АП
Разделение сигналов НИСЗ кодовое
Режим АП пассивный
Наклонение орбит, градус 55
Разнос орбит по широте 60.
57. Дифференциальный режим gps (принцип действия, основные технические характеристики, область применения).
Наиболее эффективным средством исключения ошибок является дифференциальный способ наблюдений - DGPS (Differential GPS). Его суть состоит в выполнении измерений двумя приемниками: один устанавливается в определяемой точке, а другой - в точке с известными координатами - базовой (контрольной) станции.
Поскольку расстояние от ИСЗ до приемников значительно больше расстояния между самими приемниками, то считают, что условия приема сигналов обоими приемниками практически одинаковы. А, следовательно, величины ошибок также будут близки. В режиме DGPS измеряют не абсолютные координаты первого приемника, а его положение относительно базового (вектор базы). Использование дифференциального режима позволяет практически полностью исключить влияние режима SA и довести точность кодовых измерений до десятков сантиметров, а фазовых - до единиц миллиметров. Наилучшие показатели имеют фазовые двухчастотные приемники. Они отличаются от фазовых одночастотных более высокой точностью, более широким диапазоном измеряемых векторов баз и большей скоростью и устойчивостью измерений. Однако современные технологические достижения позволяют одночастотным фазовым приемникам по характеристикам приблизиться к двухчастотным.
Одной из особенностей режима DGPS является необходимость передачи дифференциальных поправок от базового приемника к определяемому. При этом различают два метода корректировки информации:
-
Метод коррекции координат, когда на станции и в определяемой точке наблюдают одни и те же ИСЗ, а затем в качестве дифференциальных поправок с базовой станции передают добавки к измеренным в определяемом пункте координатам. Недостатком этого метода является то, что приемники базового и определяемого пунктов должны работать по одному рабочему созвездию. Это неудобно, поскольку все потребители, использующие дифференциальные поправки должны работать по одним и тем же ИСЗ. В этом случае не обеспечивается наилучшее значение PDOP во всех определяемых пунктах.
-
Метод коррекции навигационных параметров, при использовании которого на базовой станции определяются поправки к измеряемым параметрам (например, псевдодальностям) для всех спутников, которые потенциально могут быть использованы потребителями. Эти поправки передаются на определяемые пункты, где уже непосредственно в GPS - приемнике вычисляются поправки к координатам. Недостатком этого метода является повышение сложности аппаратуры потребителей.
Метод DGPS может быть использован двояко. Если необходимо вычислять координаты в режиме реального времени, то необходим надежный радиоканал для передачи дифференциальных поправок, а в состав GPS - приемника должен входить радиомодем. Если же передача поправок не выполняется, то можно использовать режим постобработки. В этом случае результаты измерений обоих приемников записываются на устройства памяти приемников (например, магнитные карты), а после прекращения измерений накопленная информация обрабатывается специальным ПО и вычисляется точное значение вектора базы.
Передача дифференциальных поправок по радиоканалу может выполняться по выделенным частотным линиям, на частотах любительских радиостанций, по системам спутниковой связи (например, INMARSAT), а также с использованием технологии передачи цифровых данных RDS (Radio Data System) на частотах FM - радиостанций. Причем иногда даже нет необходимости иметь GPS - приемник на базовой станции, поскольку во многих странах уже действует развитая сеть DGPS - станций, постоянно транслирующих поправки на определенную территорию. Например, в прибрежной зоне Северной Америки, Европы, Австралии и Новой Зеландии развернуты сети радиомаяков для морской DGPS -навигации. Американская корпорация DCI (Differential Corrections Inc.) распространяет дифференциальные поправки на всю континентальную часть США, используя для ретрансляции радиосигналов спутники связи Galaxy. Подобные сети станций действуют и на территориях многих европейских стран.
