
- •1. Приборы и измерительные системы ла назначение и основные функции.
- •2. Сигналы, подлежащие измерению на борту ла.
- •3. Классификация измерительных устройств.
- •4.Процесс измерения как последовательное преобразование информации измерительными преобразователями.
- •5. Информационно-измерительные комплексы ла, современное состояние, тенденции развития, основные технические требования.
- •12. Канал измерения расхода.
- •6.Функция связи измерительного преобразователя (ип), математическая модель, чувствительность.
- •7. Составление структурной схемы измерительного канала (ик).
- •10. Назначение и функции топливо-измерительных комплексов.
- •11. Состав и структурная схема топливо - измерительного комплекса.
- •13. Тахометрические расходомеры. Математическая модель. Особенности конструкции. Анализ погрешностей.
- •Математическая модель
- •Особенности конструкции
- •Анализ погрешностей канала измерения расхода
- •14. Тахометрические расходомеры с температурной коррекцией плотности. Примеры схемной реализации.
- •16. Способы получения интегрального расхода, анализ погрешностей канала измерения расхода.
- •17. Канал измерения запаса топлива. Назначение средств измерения количества топлива.
- •19. Канал центровки. Назначение, принцип действия и структура систем управлением положением центра масс ла. Особенности реализации.
- •20. Назначение и функции комплексов контроля силовой установки, состав и структурная схема измерения параметров, точностные требования к ним.
- •21. Канал измерения давления. Датчики давления, их разновидности. Упругие чувствительные элементы (учэ). Разновидности учэ применяемые в авиации.
- •22. Полупроводниковые датчики. Математические модели типовых чувствительных элементов в статике, динамике, источники погрешностей.
- •24. Канал измерения температуры. Общие сведения о шкале температур. Классификация термометров по принципу действия, нашедших применение в авиаприборостроении.
- •28.Термобиметаллические преобразователи. Особенности конструкции. Анализ источников статических погрешностей. Математическая модель преобразователя. Иллюстрация примерами.
- •27. Терморезистивные преобразователи. Принцип действия. Основные разновидности терморезисторов, применяемые в авиации. Математические модели в статике и динамике.Особенности конструкции датчика.
- •29. Канал измерения угловой скорости. Приборы и датчики угловой скорости. Назначение принцип действия измерителей угловой скорости.
- •29. Индукционные тахометры. Получение математической модели. Анализ погрешностей. Особенности конструкции.
- •30. Цифровой тахометр, его достоинства и недостатки, сопоставление статических и динамических погрешностей с индукционным. Методы повышения точности и быстродействия.
- •31. Примеры современной реализации, сопряжение с каналом связи.
- •32. Структурная схема электронной системы управления двигателем (эсуд). Особенности реализации.
- •33.Канал измерения вибрации авиадвигателя. Индукционные и пьезодатчики вибрации, их математические модели. Структурная схема аппаратуры контроля вибрации.
- •34. Назначение и функции пилотажно-навигационных комплексов, их разновидности. Типовая структурная схема.
- •35. Барометрический канал измерения высоты полета ла. Математическая модель атмосферы. Основные источники методических погрешностей при измерении барометрической высоты.
- •36. Аэрометрический канал измерения скорости ла. Математическая модель измерителей приборной, воздушной скорости и числа Маха.
- •Способы измерения скорости:
- •Измерение вертикальной скорости
- •37. Система воздушных сигналов (свс). Задачи решаемых свс. Функциональная схема. Принципы построения датчиков первичных сигналов и основных решающих блоков.
- •41. Приборы и датчики магнитного курса. Магнитное поле Земли. Понятие магнитного склонения. Простейший магнитный компас. Погрешности, девиационный прибор. Математическая модель.
- •Простейший магнитный компас. Погрешности, девиационный прибор. Математическая модель.
- •42. Индукционный датчик магнитного курса. Особенности конструкции. Анализ источников погрешностей. Датчики магнитного курса с использованием эффекта Холла.
- •43. Гироскопические датчики, их погрешности и математическая модель.
- •44. Радиокомпас, принцип действия и его погрешности.
- •Принцип работы радиокомпаса (кратко!!!)
- •45. Принципы построения курсовых систем. Комплексная обработка информации от разных датчиков в курсовых системах и причины ее низкой эффективности. Принципы построения курсовых систем.
- •Виды представления пилотажной, навигационной и иной информации на борту ла.
- •47. Психофизическая деятельность человека на борту ла. Особенности деятельности человека-оператора на борту ла.
- •51. Компоновка авиационных эргатических комплексов. Особенности, факторы и виды компоновки.
- •52.Электронные сои и комплексы отображения информации. Устройства и системы отображения на электронно-лучевых трубках (элт) Общее устройство элт в сои
17. Канал измерения запаса топлива. Назначение средств измерения количества топлива.
Приборы, предназначенные для измерения объемного или весового количества топлива в баках ЛА, называются топливомерами.
Запас топлива на ЛА чрезвычайно велик и неправильное расходование его из отдельных баков может привести к нарушению центровки ЛА. Для устранения этого на ЛА устанавливаются специальные автоматы, обеспечивающие выработку топлива из отдельных групп баков по определенной программе. Такие автоматы, составляющие единую систему с топливомерами, называются системами измерения и расходования топлива.
Для измерения суммарного расхода топлива за время полета применяются суммирующие расходомеры.
Знание общего запаса топлива на ЛА и его расхода в единицу времени позволяет определить время полета, а при известной скорости полета – и дальность.
Существуют следующие методы измерения количества топлива:
-
манометрические, при которых измеряется давление столба жидкости в баке;
-
поплавковые, основанные на измерении положения поплавка, плавающего на поверхности жидкости;
-
емкостные, при которых электрическая емкость специального конденсатора, установленного баке, зависит от уровня жидкости;
-
радиационные, основанные на измерении интенсивности ядерного излучения, зависящего от уровня жидкости;
-
радиочастотные, основанные на зависимости от уровня жидкости параметров отрезков длинных линий;
-
ультраакустические, основанные на измерении уровня по отражению ультразвука от границ раздела сред и др.
Наиболее распространены поплавковые и емкостные методы измерения количества топлива.
Рассмотрим емкостной уровнемер.
Принцип действия емкостного топливомера основан на зависимости величины емкости специального конденсатора от уровня топлива в баке.
Чувствительный элемент емкостного топливомера (рис.) представляет собой цилиндрический конденсатор с внутренним электродом 1,внешним 2 и изоляционным слоем 3. Между изоляционным слоем и внешним электродом находится слой жидкости (топливо, кислота), уровень которой необходимо измерить. Если уровень жидкости в баке изменяется, то будет изменяться и емкость конденсатора вследствие того, что диэлектрические постоянные жидкости и воздуха различны.
Рис. Схема чувствительного элемента емкостного топливомера: 1 - внутренний электрод; 2 - внешний электрод;
3 - изоляционный слой.
19. Канал центровки. Назначение, принцип действия и структура систем управлением положением центра масс ла. Особенности реализации.
Для поддержания центра тяжести самолета в определенном положении при изменении запаса топлива необходимо, чтобы масса топлива в баках, расположенных симметрично относительно продольной оси самолета, была одинаковой. Эту задачу решают автоматы выравнивания пли автоматы центровки перекачкой топлива (АЦТ).
Принцип действия АЦТ основан на сравнении электрических параметров (напряжения или сопротивления), пропорциональных количеству топлива в соответствующих баках или крыльях, и выработке по результатам сравнения сигнала управления насосами перекачки топлива.
Потенциометры R1 и R2 питаются от трансформатора Т. Выходные противофазные напряжения потенциометров поданы на параллельно соединенные фазочувствительные реле РФ1 и РФ2. Щетки потенциометров R1 и R2 перемещаются на углы, пропорциональные массе топлива в сравниваемых баках, электродвигателями, уравновешивающими мостовые схемы ТИС соответственно левого и правого крыла.
Если выработка топлива из крыльев идет неравномерно, то при достижении установленной разности масс топлива на входе РФ1 появится напряжение, достаточное для его срабатывания. Реле РФ1 в зависимости от фазы входного напряжения выработает сигнал пуска насосов для перекачки топлива с левого крыла в правое или наоборот.
В том случае когда по каким-либо причинам разность масс топлива продолжает увеличиваться, то срабатывает реле РФ2 и включает сигнализацию «Отказ АЦТ».
Запас топлива на самолетах чрезвычайно велик и неправильное расходование его из отдельных баков может привести к нарушению центровки самолета. Для устранения этого на самолетах устанавливаются специальные автоматы, обеспечивающие выработку топлива из отдельных групп баков по определенной программе. Такие автоматы, составляющие единую систему с топливомерами, называются системами измерения и расходования топлива. Наиболее известная из таких систем является КТЦ2-1, КТЦ3-1.