
- •1. Приборы и измерительные системы ла назначение и основные функции.
- •2. Сигналы, подлежащие измерению на борту ла.
- •3. Классификация измерительных устройств.
- •4.Процесс измерения как последовательное преобразование информации измерительными преобразователями.
- •5. Информационно-измерительные комплексы ла, современное состояние, тенденции развития, основные технические требования.
- •12. Канал измерения расхода.
- •6.Функция связи измерительного преобразователя (ип), математическая модель, чувствительность.
- •7. Составление структурной схемы измерительного канала (ик).
- •10. Назначение и функции топливо-измерительных комплексов.
- •11. Состав и структурная схема топливо - измерительного комплекса.
- •13. Тахометрические расходомеры. Математическая модель. Особенности конструкции. Анализ погрешностей.
- •Математическая модель
- •Особенности конструкции
- •Анализ погрешностей канала измерения расхода
- •14. Тахометрические расходомеры с температурной коррекцией плотности. Примеры схемной реализации.
- •16. Способы получения интегрального расхода, анализ погрешностей канала измерения расхода.
- •17. Канал измерения запаса топлива. Назначение средств измерения количества топлива.
- •19. Канал центровки. Назначение, принцип действия и структура систем управлением положением центра масс ла. Особенности реализации.
- •20. Назначение и функции комплексов контроля силовой установки, состав и структурная схема измерения параметров, точностные требования к ним.
- •21. Канал измерения давления. Датчики давления, их разновидности. Упругие чувствительные элементы (учэ). Разновидности учэ применяемые в авиации.
- •22. Полупроводниковые датчики. Математические модели типовых чувствительных элементов в статике, динамике, источники погрешностей.
- •24. Канал измерения температуры. Общие сведения о шкале температур. Классификация термометров по принципу действия, нашедших применение в авиаприборостроении.
- •28.Термобиметаллические преобразователи. Особенности конструкции. Анализ источников статических погрешностей. Математическая модель преобразователя. Иллюстрация примерами.
- •27. Терморезистивные преобразователи. Принцип действия. Основные разновидности терморезисторов, применяемые в авиации. Математические модели в статике и динамике.Особенности конструкции датчика.
- •29. Канал измерения угловой скорости. Приборы и датчики угловой скорости. Назначение принцип действия измерителей угловой скорости.
- •29. Индукционные тахометры. Получение математической модели. Анализ погрешностей. Особенности конструкции.
- •30. Цифровой тахометр, его достоинства и недостатки, сопоставление статических и динамических погрешностей с индукционным. Методы повышения точности и быстродействия.
- •31. Примеры современной реализации, сопряжение с каналом связи.
- •32. Структурная схема электронной системы управления двигателем (эсуд). Особенности реализации.
- •33.Канал измерения вибрации авиадвигателя. Индукционные и пьезодатчики вибрации, их математические модели. Структурная схема аппаратуры контроля вибрации.
- •34. Назначение и функции пилотажно-навигационных комплексов, их разновидности. Типовая структурная схема.
- •35. Барометрический канал измерения высоты полета ла. Математическая модель атмосферы. Основные источники методических погрешностей при измерении барометрической высоты.
- •36. Аэрометрический канал измерения скорости ла. Математическая модель измерителей приборной, воздушной скорости и числа Маха.
- •Способы измерения скорости:
- •Измерение вертикальной скорости
- •37. Система воздушных сигналов (свс). Задачи решаемых свс. Функциональная схема. Принципы построения датчиков первичных сигналов и основных решающих блоков.
- •41. Приборы и датчики магнитного курса. Магнитное поле Земли. Понятие магнитного склонения. Простейший магнитный компас. Погрешности, девиационный прибор. Математическая модель.
- •Простейший магнитный компас. Погрешности, девиационный прибор. Математическая модель.
- •42. Индукционный датчик магнитного курса. Особенности конструкции. Анализ источников погрешностей. Датчики магнитного курса с использованием эффекта Холла.
- •43. Гироскопические датчики, их погрешности и математическая модель.
- •44. Радиокомпас, принцип действия и его погрешности.
- •Принцип работы радиокомпаса (кратко!!!)
- •45. Принципы построения курсовых систем. Комплексная обработка информации от разных датчиков в курсовых системах и причины ее низкой эффективности. Принципы построения курсовых систем.
- •Виды представления пилотажной, навигационной и иной информации на борту ла.
- •47. Психофизическая деятельность человека на борту ла. Особенности деятельности человека-оператора на борту ла.
- •51. Компоновка авиационных эргатических комплексов. Особенности, факторы и виды компоновки.
- •52.Электронные сои и комплексы отображения информации. Устройства и системы отображения на электронно-лучевых трубках (элт) Общее устройство элт в сои
7. Составление структурной схемы измерительного канала (ик).
Структурная схема – совокупность отдельных звеньев, осуществляющих элементарные преобразования входного сигнала до выходного, которые могут быть формально описаны уравнениями, характеристиками.
Рассмотрим пример структурной схемы термоэлектрического термометра. В этом приборе осуществляется преобразование температуры в ЭДС е, затем ЭДС наводит ток в катушке I, и в результате взаимодействия тока с магнитным полем возникает перемещение стрелки . Итак, цепочка преобразований сигналов представляется соотношением -е-I-, что можно отобразить тремя звеньями.
Соединение звеньев в различных схемах может быть последовательным, параллельно согласным, параллельно встречным и смешанным (нижний рис).
Рис. 8. Схемы соединения звеньев.
При рассмотрении структурной схемы прибора необходимо определить каким способом соединяются звенья, знать передаточные характеристики звеньев и определить результирующую характеристику прибора, чувствительность, ФП, АЧХ, ФЧХ и др.
10. Назначение и функции топливо-измерительных комплексов.
На большинстве самолетов устанавливаются две системы. Одна включает устройства для измерения количества топлива в баках, управления порядком заправки его на земле и выработки в полете, другая – для измерения суммарного и мгновенного расходов топлива.
Совместное применение систем обосновано необходимостью измерять не только запас, но и расход топлива двигателями. В то же время известно, что наличие на борту летательного аппарата военного назначения только расходомера не гарантирует точного определения расхода и остатка топлива в случае утечки топлива из топливной системы в результате пробоя баков и других причин. Но наличие на борту расходомера и топливомера увеличивает общую массу оборудования, количество визуальных приборов и затрудняет работу летчика. В связи с этим в настоящее время наметилась тенденция к созданию комбинированных систем – топливомерно-расходомерные (топливо измерительных комплексов), работающих на один показывающий прибор. Это позволило получить выигрыш в массе, обеспечить точное измерение запаса топлива в аварийных ситуациях и при различных эволюциях самолета, а также упростило индикацию текущих значений запаса и расхода топлива.
Топливо измерительные комплексы помимо выполняемых ими задач измерения расхода топлива и управления расходом предусматривают широкие связи с бортовыми устройствами регистрации (БУР), автоматизированными системами контроля (АСК) и наземными пунктами управления полетами, выдают информацию о располагаемой дальности и продолжительности полета в пилотажно-навигационные комплексы.
В настоящее время на самолетах находят применение топливомеры-расходомеры типа ТР54, ТРВ, ТР1–3 и топливомерно-расходомерные системы СТР2–2А, СТР6–2А, СТР6–5, СТР7–2А и др.
Топливомерно-расходомерная система СТР6–5А предназначена для выполнения следующих задач:
-
измерения и индикации запаса топлива в единицах массы (килограммах) во всех баках самолета;
-
вычисления и индикации располагаемой дальности полета на текущем и оптимальном режимах работы двигателей и полета самолета;
-
контроля централизованной заправки топлива и управления ею (на земле);
-
сигнализации окончании выработки топлива из баков, неисправного состояния системы СТР6–5А и топливной системы, нормального и предельно допустимого уровней масла левого и правого двигателей, допустимых уровней гидросмеси в баках бустерной и общей гидросистем (на земле);
-
выдачи информации о запасе, резервном запасе и расходе топлива, о располагаемой дальности полета, о неисправном состоянии СТР6–5А и топливной системы, о возврате по запасу топлива в бортовое устройство регистрации (БУР) и контрольно-записывающую аппаратуру (КЗЛ), в бортовую систему контроля и предупреждения экипажа, в системы световой сигнализации и речевой информации, в наземные автоматизированные контрольно-ремонтные средства (ЛКРС).
-