Добавил:
Всем студентам большой привет! Раньше сам усиленно искал материалы на этом сайте. Пришло время делиться своими наработками за все 6 лет обучения. Всем желаю удачи! Штурмуйте, дерзайте и творите! Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
АП ИВК 4 курс / Ответы на вопросы на экзамен.docx
Скачиваний:
152
Добавлен:
24.05.2019
Размер:
1.23 Mб
Скачать

43. Гироскопические датчики, их погрешности и математическая модель.

Гироскопом называют вращающееся вокруг оси симметрии с большой угловой скоростью тело вращения (ротор), одна из точек которого неподвижна. Ось z симметрии ротора 1 (рис 1.1) называют осью фигуры или осью ротора гироскопа.

В большинстве гироскопических приборов для обеспечения свободы вращения ротора гироскопа вокруг неподвижной точки применяют карданов подвес, который состоит из двух рамок 2 и 3. Ротор 1 гироскопа с большой угловой скоростью y вращается вокруг оси y1относительно внутренней рамки 2, которая может поворачиваться вокруг оси z относительно рамки 3, а последняя - вокруг оси x относительно неподвижной подставки 4.

Карданов подвес обеспечивает ротору гироскопа свободу вращения относительно трех осей (x, y1 и z). Поэтому гироскоп, установленный в кардановом подвесе, называют гироскопом с тремя степенями свободы. Если центр масс гироскопа совпадает с точкой пресечения осей карданова подвеса, то такой гироскоп называется астатическим.

z

y

x

x

y1

Рис.1.1. Гироскоп в кардановом подвесе:

1 – ротор гироскопа; 2 – внутренняя рамка гироскопа; 3 – наружная рамка гироскопа; 4 – подставка; y – собственная угловая скорость вращения ротора гироскопа; x - вектор переносной угловой скорости.

Для рассмотрения математической модели гироскопа обратимся к рис. 1.2. Положение ротора относительно подставки (оси ) определяется тремя углами ,  и , которые получаются при последовательных поворотах гироскопа и отклонении его собственных осей x, y и z от осей неподвижного основания.

Согласно рисунку H – кинетический момент гироскопа; Jx и Jy – моменты инерции ротора гироскопа относительно осей x и y.

В теоретической механике при изучении законов движения гироскопа различают свободное и вынужденное движение гироскопа; свободное движение гироскопа, называемое нутацией, представляет собой движение по инерции, когда моменты внешних сил не действуют на гироскоп. Движение гироскопа, нагруженного моментом внешних сил, представляет собой совокупность вынужденного и свободного движения. Вынужденное движение гироскопа называется прецессией.

Наиболее важными бортовыми гироскопическими приборами являются авиагоризонты, указатели поворота, гирополукомпасы, а также выключатели коррекции. [1].

Геометрические (карданные), погрешности. Определение положения летательного аппарата относительно оси ротора, производится посредством намерения углов поворота  и . Направление осей, вокруг которых отсчитываются углы  и , в общем случае не совпадает с направлением осей отсчета углов, определяющих угловое положение летательного аппарата относительно опорной (базовой) системы координат. Это несовпадение осей является причиной появления карданных погрешностей.

Скоростные кинематические погрешности. Скоростные погрешности возникают вслед­ствие движения опорной системы координат в инерциальном пространстве. Например, если в качестве опорной системы (координат выбран географический трехгранник в точке старта летательного аппарата, то скоростные погрешности определяются угловой скоростью вращения Земли. Для некорректируемых гироскопов скоростные погрешности находятся из кинематических соотношений при необходимости и могут быть учтены в бортовом вычислительном устройстве.

Кинематические погрешности. Кинематические погрешности возникают вследствие конического движения измерительных осей гироскопа в инерциальном пространстве. Такое коническое движение имеет место в результате действия инерционных моментов от рамок карданова подвеса или моментов сухого трения, которые возникают вследствие угловых колебаний ле­тательного аппарата, динамической несбалансированности ротора гироскопа или угловых вибраций основания [3].

Инструментальные погрешности. Вследствие несовершенства элементов прибора на гироскоп действуют возмущающие моменты трения, моменты от статической несбалансированности, неравножесткости конструкции и т. п. Под действием этих моментов ось ротора прецессирует в инерциальном пространстве, отклоняясь от заданного направления, что приводит к по­явлению инструментальных погрешностей при определе­нии углового положения летательного аппарата. К инструментальным погрешностям относятся также погрешности начальной выставки, погрешности датчиков угла и т. п. [4].

Соседние файлы в папке АП ИВК 4 курс