
- •1. Приборы и измерительные системы ла назначение и основные функции.
- •2. Сигналы, подлежащие измерению на борту ла.
- •3. Классификация измерительных устройств.
- •4.Процесс измерения как последовательное преобразование информации измерительными преобразователями.
- •5. Информационно-измерительные комплексы ла, современное состояние, тенденции развития, основные технические требования.
- •12. Канал измерения расхода.
- •6.Функция связи измерительного преобразователя (ип), математическая модель, чувствительность.
- •7. Составление структурной схемы измерительного канала (ик).
- •10. Назначение и функции топливо-измерительных комплексов.
- •11. Состав и структурная схема топливо - измерительного комплекса.
- •13. Тахометрические расходомеры. Математическая модель. Особенности конструкции. Анализ погрешностей.
- •Математическая модель
- •Особенности конструкции
- •Анализ погрешностей канала измерения расхода
- •14. Тахометрические расходомеры с температурной коррекцией плотности. Примеры схемной реализации.
- •16. Способы получения интегрального расхода, анализ погрешностей канала измерения расхода.
- •17. Канал измерения запаса топлива. Назначение средств измерения количества топлива.
- •19. Канал центровки. Назначение, принцип действия и структура систем управлением положением центра масс ла. Особенности реализации.
- •20. Назначение и функции комплексов контроля силовой установки, состав и структурная схема измерения параметров, точностные требования к ним.
- •21. Канал измерения давления. Датчики давления, их разновидности. Упругие чувствительные элементы (учэ). Разновидности учэ применяемые в авиации.
- •22. Полупроводниковые датчики. Математические модели типовых чувствительных элементов в статике, динамике, источники погрешностей.
- •24. Канал измерения температуры. Общие сведения о шкале температур. Классификация термометров по принципу действия, нашедших применение в авиаприборостроении.
- •28.Термобиметаллические преобразователи. Особенности конструкции. Анализ источников статических погрешностей. Математическая модель преобразователя. Иллюстрация примерами.
- •27. Терморезистивные преобразователи. Принцип действия. Основные разновидности терморезисторов, применяемые в авиации. Математические модели в статике и динамике.Особенности конструкции датчика.
- •29. Канал измерения угловой скорости. Приборы и датчики угловой скорости. Назначение принцип действия измерителей угловой скорости.
- •29. Индукционные тахометры. Получение математической модели. Анализ погрешностей. Особенности конструкции.
- •30. Цифровой тахометр, его достоинства и недостатки, сопоставление статических и динамических погрешностей с индукционным. Методы повышения точности и быстродействия.
- •31. Примеры современной реализации, сопряжение с каналом связи.
- •32. Структурная схема электронной системы управления двигателем (эсуд). Особенности реализации.
- •33.Канал измерения вибрации авиадвигателя. Индукционные и пьезодатчики вибрации, их математические модели. Структурная схема аппаратуры контроля вибрации.
- •34. Назначение и функции пилотажно-навигационных комплексов, их разновидности. Типовая структурная схема.
- •35. Барометрический канал измерения высоты полета ла. Математическая модель атмосферы. Основные источники методических погрешностей при измерении барометрической высоты.
- •36. Аэрометрический канал измерения скорости ла. Математическая модель измерителей приборной, воздушной скорости и числа Маха.
- •Способы измерения скорости:
- •Измерение вертикальной скорости
- •37. Система воздушных сигналов (свс). Задачи решаемых свс. Функциональная схема. Принципы построения датчиков первичных сигналов и основных решающих блоков.
- •41. Приборы и датчики магнитного курса. Магнитное поле Земли. Понятие магнитного склонения. Простейший магнитный компас. Погрешности, девиационный прибор. Математическая модель.
- •Простейший магнитный компас. Погрешности, девиационный прибор. Математическая модель.
- •42. Индукционный датчик магнитного курса. Особенности конструкции. Анализ источников погрешностей. Датчики магнитного курса с использованием эффекта Холла.
- •43. Гироскопические датчики, их погрешности и математическая модель.
- •44. Радиокомпас, принцип действия и его погрешности.
- •Принцип работы радиокомпаса (кратко!!!)
- •45. Принципы построения курсовых систем. Комплексная обработка информации от разных датчиков в курсовых системах и причины ее низкой эффективности. Принципы построения курсовых систем.
- •Виды представления пилотажной, навигационной и иной информации на борту ла.
- •47. Психофизическая деятельность человека на борту ла. Особенности деятельности человека-оператора на борту ла.
- •51. Компоновка авиационных эргатических комплексов. Особенности, факторы и виды компоновки.
- •52.Электронные сои и комплексы отображения информации. Устройства и системы отображения на электронно-лучевых трубках (элт) Общее устройство элт в сои
29. Индукционные тахометры. Получение математической модели. Анализ погрешностей. Особенности конструкции.
Представляет собой систему, состоящую из индуктора и магнитоиндукционного преобразователя. На валу двигателя установлено колесо из ферромагнитного материала с определенным числом зубьев.
Работа заключается в следующем: вал вращается → изменяется сопротивление воздушного зазора → изменяется сопротивление → изменяется магнитный поток → генерируется ЭДС в обмотке индуктора.
Выходной сигнал характеризует переменные составляющие в виде искаженных синусоид.
Диапазон измерений от 40 мВ до 1,2-1,4 В.
Погрешности индукционного преобразователя данного типа:
Датчики магнитоиндукционных тахометров не имеют методической погрешности.
Основная инструментальная погрешность указателя тахометра определяется трением в подшипниках и ошибками градуировки шкалы.
Дополнительные погрешности обусловлены, прежде всего, влиянием температуры и вызываются изменением электрического сопротивления чувствительного элемента, магнитной проводимости магнитопроводов и упругих свойств противодействующей пружины.
30. Цифровой тахометр, его достоинства и недостатки, сопоставление статических и динамических погрешностей с индукционным. Методы повышения точности и быстродействия.
Они строятся на основе тех же датчиков, что и аналоговые, добавляется только цифровая часть. Рассмотрим подробнее цифровую часть.
Цифровая часть представляет собой нормирующий усилитель, генератор тактовых импульсов, АЦП, блок счета и индикации.
Нормирующий усилитель как правило состоит из операционного усилителя и группы резисторов, включенных по определенной схеме.Он служит для усиления и нормирования аналогового сигнала, поступающего на вход цифровой части. Диоды представленные на схеме служат для ограничения сигнала в пределах от 0 до 5 В.
Генератор тактовых импульсов (ГТИ) предназначен для синхронизации и получения необходимой частоты
К достоинствам можно отнести то, что на выходе получаем цифровой код, а не аналоговый. То есть уже не требуется дополнительных преобразований напряжение - код. Эту информацию непосредственно может использовать и БЦВМ, и летчик.
Недостатки проявляются в дополнительных погрешностях. Помимо погрешностей самого датчика добавляются погрешности цифровой части. Кроме того, летчиком семисегментные индикаторы хуже воспринимаются, чем стрелочные.
31. Примеры современной реализации, сопряжение с каналом связи.
На самолетах и вертолетах объекты контроля - авиадвигатели: и различное оборудование - располагаются на значительном удалении от кабины, поэтому возникает необходимость в дистанционном измерении важнейших параметров, по которым можно определить состояние и режимы работы систем самолета и двигателя. Например, чтобы постоянно контролировать частоту вращения вала авиадвигателя, необходимо датчик частоты вращения установить в местах измерения указанных параметров. При передачи информации носителем ее обычно является не непосредственно измеряемый параметр, а электрический сигнал (напряжение или ток), который после соответствующего преобразования используется для управляющего воздействия на подвижную систему или другое исполнительное устройства индикатора.
Как уже отмечалось, каждый электрический прибор состоит из преобразователя физической величины в электрический сигнал (датчика), линий передачи и указателя.
По мере прохождения по каналам связи может изменяться в преобразователях как природа, так и вид сигнала. Соответственно различают физические преобразователи и преобразователи вида сигналов.
К преобразователям вида сигнала относят преобразователи «напряжение - код», «импульсы - код», «код - напряжение» и др.
Линии связи выполняются из проводов БПВЛ, БПВЛЭ, БПТЭ. Для уменьшения помех производят экранирование проводов и заземление экрана, разнос проводов питания и линий связи, устанавливают искрогасящие устройства.
В качестве указателей в большинстве электрических приборов использовались магнитоэлектрические гальванометры и логометры.
Современные средства отражения информации реализуются на электронных индикаторах различного типа, в частности на ЖКИ.
В настоящее время в авиации применяются частотно – импульсные тахометры, в которых используется зависимость частоты следования электрических импульсов напряжения от частоты вращения вала авиадвигателя.
Принцип действия частотно-импульсных тахометров основан на измерении частоты переменной ЭДС, пропорциональной частоте вращения вала п:
f=кn
В качестве датчиков в таких системах могут использоваться датчики частоты вращения ДЧВ-2500 или ДТА-10Е.
Принцип действия датчика ДЧВ-2500 заключается в индуцировании электрических импульсов напряжения в обмотке датчика за счет изменения сопротивления магнитной цепи при вращении, индуктора под торцом датчика
Датчик частоты вращения ДЧВ-2500 предназначен для выдачи электрических импульсов напряжения, частота следования которых пропорциональна угловой скорости вращения вала авиадвигателя. Датчик работает совместно с индуктором, который является неотъемлемой частью двигателя и в состав датчика не входит.