
- •1. Приборы и измерительные системы ла назначение и основные функции.
- •2. Сигналы, подлежащие измерению на борту ла.
- •3. Классификация измерительных устройств.
- •4.Процесс измерения как последовательное преобразование информации измерительными преобразователями.
- •5. Информационно-измерительные комплексы ла, современное состояние, тенденции развития, основные технические требования.
- •12. Канал измерения расхода.
- •6.Функция связи измерительного преобразователя (ип), математическая модель, чувствительность.
- •7. Составление структурной схемы измерительного канала (ик).
- •10. Назначение и функции топливо-измерительных комплексов.
- •11. Состав и структурная схема топливо - измерительного комплекса.
- •13. Тахометрические расходомеры. Математическая модель. Особенности конструкции. Анализ погрешностей.
- •Математическая модель
- •Особенности конструкции
- •Анализ погрешностей канала измерения расхода
- •14. Тахометрические расходомеры с температурной коррекцией плотности. Примеры схемной реализации.
- •16. Способы получения интегрального расхода, анализ погрешностей канала измерения расхода.
- •17. Канал измерения запаса топлива. Назначение средств измерения количества топлива.
- •19. Канал центровки. Назначение, принцип действия и структура систем управлением положением центра масс ла. Особенности реализации.
- •20. Назначение и функции комплексов контроля силовой установки, состав и структурная схема измерения параметров, точностные требования к ним.
- •21. Канал измерения давления. Датчики давления, их разновидности. Упругие чувствительные элементы (учэ). Разновидности учэ применяемые в авиации.
- •22. Полупроводниковые датчики. Математические модели типовых чувствительных элементов в статике, динамике, источники погрешностей.
- •24. Канал измерения температуры. Общие сведения о шкале температур. Классификация термометров по принципу действия, нашедших применение в авиаприборостроении.
- •28.Термобиметаллические преобразователи. Особенности конструкции. Анализ источников статических погрешностей. Математическая модель преобразователя. Иллюстрация примерами.
- •27. Терморезистивные преобразователи. Принцип действия. Основные разновидности терморезисторов, применяемые в авиации. Математические модели в статике и динамике.Особенности конструкции датчика.
- •29. Канал измерения угловой скорости. Приборы и датчики угловой скорости. Назначение принцип действия измерителей угловой скорости.
- •29. Индукционные тахометры. Получение математической модели. Анализ погрешностей. Особенности конструкции.
- •30. Цифровой тахометр, его достоинства и недостатки, сопоставление статических и динамических погрешностей с индукционным. Методы повышения точности и быстродействия.
- •31. Примеры современной реализации, сопряжение с каналом связи.
- •32. Структурная схема электронной системы управления двигателем (эсуд). Особенности реализации.
- •33.Канал измерения вибрации авиадвигателя. Индукционные и пьезодатчики вибрации, их математические модели. Структурная схема аппаратуры контроля вибрации.
- •34. Назначение и функции пилотажно-навигационных комплексов, их разновидности. Типовая структурная схема.
- •35. Барометрический канал измерения высоты полета ла. Математическая модель атмосферы. Основные источники методических погрешностей при измерении барометрической высоты.
- •36. Аэрометрический канал измерения скорости ла. Математическая модель измерителей приборной, воздушной скорости и числа Маха.
- •Способы измерения скорости:
- •Измерение вертикальной скорости
- •37. Система воздушных сигналов (свс). Задачи решаемых свс. Функциональная схема. Принципы построения датчиков первичных сигналов и основных решающих блоков.
- •41. Приборы и датчики магнитного курса. Магнитное поле Земли. Понятие магнитного склонения. Простейший магнитный компас. Погрешности, девиационный прибор. Математическая модель.
- •Простейший магнитный компас. Погрешности, девиационный прибор. Математическая модель.
- •42. Индукционный датчик магнитного курса. Особенности конструкции. Анализ источников погрешностей. Датчики магнитного курса с использованием эффекта Холла.
- •43. Гироскопические датчики, их погрешности и математическая модель.
- •44. Радиокомпас, принцип действия и его погрешности.
- •Принцип работы радиокомпаса (кратко!!!)
- •45. Принципы построения курсовых систем. Комплексная обработка информации от разных датчиков в курсовых системах и причины ее низкой эффективности. Принципы построения курсовых систем.
- •Виды представления пилотажной, навигационной и иной информации на борту ла.
- •47. Психофизическая деятельность человека на борту ла. Особенности деятельности человека-оператора на борту ла.
- •51. Компоновка авиационных эргатических комплексов. Особенности, факторы и виды компоновки.
- •52.Электронные сои и комплексы отображения информации. Устройства и системы отображения на электронно-лучевых трубках (элт) Общее устройство элт в сои
27. Терморезистивные преобразователи. Принцип действия. Основные разновидности терморезисторов, применяемые в авиации. Математические модели в статике и динамике.Особенности конструкции датчика.
Электрические термометры сопротивления применяются в авиации для измерения температуры масла и воздуха внутри и снаружи кабин, они основаны на изменение сопротивления или проводимости от температуры.
Для металлов обычно принимают, что сопротивление является линейной функцией температуры, т.е.
,
где R и R0 – сопротивления, соответствующие температурам θ и θ0; α– температурный коэффициент сопротивления.
Для температур ниже 0С справедливо соотношение:
.
Уравнение (20) справедливо при малых отклонениях температуры.
Материалы, предназначенные для теплочувствительного элемента, должны удовлетворять ряду требований: иметь стабильную и хорошо воспроизводимую монотонную зависимость сопротивления от температуры и достаточно высокое значение ТКС, определяемого выражением:
их физические и химические свойства должны оставаться стабильными во времени в рабочем диапазоне температур. Не должны быть чувствительными к изменениям других внешних параметров, таких как давление, влажность, напряжённость магнитного поля, загрязнение и др.
Полупроводниковые преобразователи (термисторы)
Для всех полупроводников характерна высокая чувствительность сопротивления к температуре, на порядок и более превышающая чувствительность металлов.
Термисторы широко
используются для измерения температур
в диапазоне (–100
+300) °С. Исходными материалами для
изготовления термисторов служат смеси
оксидов никеля, марганца, меди, кобальта,
которые смешивают со специальным
веществом в нужном соотношении;
прессованием им придают необходимую
форму, их спекают при температуре,
близкой к температуре плавления
используемых оксидов.
Зависимость сопротивления термисторов от температуры описывается выражением:
где R0 – сопротивление термистора при Т=273, T=273°+θ – абсолютная температура; B – постоянная материала.
1. Теплоёмкость терморезистора (С) – количество тепла, которое может аккумулировать терморезистор при изменении его температуры на 1 °С:
,
где WT – тепло, выделенное в теле терморезистора; Wα – тепло, рассеянное в окружающую среду. С однозначно определяется температурой терморезистора и численно равна энергии, которую необходимо сообщить терморезистору, чтобы изменить его температуру на 1°С.
2. Динамический коэффициент рассеяния мощности кД:
где
;
kД
- определяется температурой терморезистора
Т,
температурой окружающей среды θ и
зависит от термодинамических свойств
последней, площади и природы поверхности
терморезистора.
3. Тепловая постоянная времени τ:
4. Электрическая постоянная времени терморезистора τe характеризует скорость изменения тока и напряжения в процессе их установления. Электрическая постоянная времени τe связана с тепловой постоянной времени τ и динамическим множителем D соотношением:
5. Динамический множитель:
или
Для измерения температуры наружного воздуха используется термометр ТНВ-15 с проволочным термопреопреобразователем П-5. Его теплочувствительный элемент 1 (рис.9) размещается в корпусе, внутренний канал которого расточен по профилю сопла Лаваля 2. Корпус, в свою очередь, крепится к основанию 4 с помощью полого откоса 3. Внутри откоса размещён подгоночный резистор 5 из манганита. Термопреобразователь П-5 устанавливается на борту самолёта так, чтобы продольная ось его корпуса совпадала с направлением набегающего потока воздуха.
Рис.1 Устройства терморезисторного термометра ТНВ-15:
1 – теплочувствительный элемент; 2 – внутренний канал корпуса; 3 – полый откос; 4 – основание; 5 – подгоночный резистор.
Принципиальная электрическая схема термометра ТНВ-15 показана на рис.2. Это четырёхплечий неуравновешенный мост с магнитоэлектрическим логометром. Примененный логометр с подвижными рамками имеет увеличенный размах шкалы термометра, однако ему свойственен ряд недостатков, связанных с малой вибропрочностью и сложностью конструкции подвижной системы. К одной из диагоналей которого подается питание от сети постоянного тока 27 В. Во вторую диагональ включены две рамки логометра.
Сопротивления Rl, R2, R4, R6, R9, R10 выполнены из манганина, сопротивления R3, R5, служащие для температурной компенсации, — из меди.
Равновесие моста обусловлено равенством
R9R4=(R11+R10)(R2+R3).
В этом случае в рамках логометра протекают равные по величине токи. Взаимодействуя с неравномерным полем постоянного магнита логометра, рамки устанавливают подвижную систему и стрелку указателя против среднего деления шкалы.
При любом другом значении температуры сопротивление приемника имеет определенную величину, равновесие моста нарушается, изменяется соотношение токов в рамках, причем каждому отношению токов соответствует единственное положение подвижной системы.
Диапазон измерения
температуры ТНВ-15 от -60 °С до +150 °С с
показывающим прибором ТНВ-1. Основная
погрешность измерения температуры на
рабочем участке диапазона измерения
приборов не превышает
4
°С.