Скачиваний:
322
Добавлен:
04.03.2014
Размер:
11.64 Mб
Скачать

9.10.3. Сопротивления обмоток двигателей с короткозамкнутыми роторами

Активное сопротивление фазы обмотки статора двигателя с короткозамкнутым ротором рассчитывается так же, как и для двигате­ля с фазным ротором.

Активное сопротивление фазы короткозамкнутого ротора опреде­ляется следующим образом. Как говорилось выше, за фазу обмотки, выполненной в виде беличьей клетки, принимают один стержень и два участка замыкающих колец (см. рис. 9,35). Токи в стержнях и за­мыкающих кольцах различны, поэтому их сопротивления при рас­чете общего сопротивления фазы должны быть приведены к одному току. Таким образом, сопротивление фазы короткозамкнутого ро­тора r2 является расчетным параметром, полученным из условия равенства электрических

Рис. 9.51. Коэффициенты к расчету проводимости

дифференциального рассеяния:

а — коэффициент Δz в зависимости от размерных соотношений bш/tzи bш/S;

б — коэффициент k' в зависимости от дробной части числа q;

в — коэф­фициент К' в зависимости от укорочения шага обмотки β;

г — коэффициент К''βв зависимости от укорочения шага обмотки β и дробной части чис­ла q;

д — коэффициент k'скв зависимости от соот­ношенияtz2/tz1и относительного скоса пазов βck

потерь в сопротивлении r2 от тока I2 и сум­марных потерь в стержне и участках замыкающих колец соответственно от тока в стержне Ic и тока в замыкающем кольце Iкл реальной машины:

(9.166)

где Iс — ток в стержне ротора; Iкл — ток в замыкающих кольцах; rC — сопротивление стержня; rкл — сопротивление участка замыка­ющего кольца, заключенного между двумя соседними стержнями (см. рис. 9.35).

Ток Iс называют током ротора и в расчетах обозначают I2.

Учитывая, что

Iкл = Iс /Δ = I2 /Δ, (9.167)

где Δ = 2sin — (см. § 9.7), из (9.167), получаем

r2 = rс + 2(9.168)

где

rc = ; (9.169)

rкл = (9.170)

В этих выражениях Iс — полная длина стержня, равная расстоя­нию между замыкающими кольцами, м; Dкл.ср — средний диаметр замыкающих колец, м (см. рис. 9.37):

Dкл.ср = D2 - hкл; (9.171)

qc — сечение стержня, м2; kr — коэффициент увеличения активного со­противления стержня от действия эффекта вытеснения тока; при рас­чете рабочих режимов в пределах изменения скольжения от холостого хода до номинального для всех роторов принимают kr = 1; qкл — площадь поперечного сечения замыкающего кольца, м2; рс и ркл — соответственно удельные сопротивления материала стержня и замыкающих колец, Омм, при расчетной температуре (см. табл. 5.1).

Сопротивление r2 для дальнейших расчетов должно быть приве­дено к числу витков первичной обмотки. Выражение коэффициента приведения для сопротивления фазы короткозамкнутого ротора по­лучают, подставляя в (9.151) значения m2 = Z2, w2 = 1/2, kоб2 = 1 и учитывая влияние скоса пазов:

(9.172)

где коэффициент скоса пазов (по 3.17)

kск = 2 sin ;

Обычно значения βск выражают в долях зубцового деления ротора tz2. При скосе пазов ротора на одно зубцовое деление стато­ра γck = π2p / Z1. В этом случае в двигателях с 2р = 2 из-за малости угла γck принимают kcк = 1.

Приведенное значение активного сопротивления фазы обмотки короткозамкнутого ротора

r'2 = r2 v12. (9.173)

Индуктивное сопротивление рассеяния обмотки статора асинх­ронного двигателя с короткозамкнутым ротором рассчитывается по той же формуле, что и для статора с фазными роторами, т. е.

x = 1,58 (9.174)

Входящий в формулу коэффициент магнитной проводимости пазового рассеяния λп определяют в зависимости от конфигурации пазов по формулам табл. 9.26.

Коэффициент магнитной проводимости лобового рассеяния λл определяется по (9.159).

Коэффициент магнитной проводимости дифференциального рассеяния λд1 определяют по формуле

(9.174а)

в которой ξ, находят следующим образом.

При открытых пазах статора и отсутствии скоса статора или ротора

(9.175)

При полузакрытых или полуоткрытых пазах статора с учетом скоса пазов

(9.176)

В этих формулах tz1 и tz2 — зубцовые деления статора и ротора; ΔZ определяют по кривой рис. 9.51, a, kβ определяют по (9.155) или (9.158); βcк = β/tz2 — скос пазов, выраженный в долях зубцового деления ротора. При отсутствии скоса пазов bск = 0; k'cк определяют по кривым рис. 9.51, д в зависимости от tz2/tz1 и βcк (при отсутствии скоса пазов — по кривой, соответствующей βск = 0).

Индуктивное сопротивление обмотки короткозамкнутого ротора определяют по формуле

(9.177)

полученной после подстановки в (9.152) значений m2 = Z2 и q2 = 1/(2р) обмотки короткозамкнутого ротора и введения дополнительного слагаемого λск.

Коэффициент магнитной проводимости пазового рассеяния обмотки короткозамкнутого ротора рассчитывают по приведенным в табл. 9.27 формулам в зависимости от конфигурации паза ротора (рис. 9.52).

Таблица 9.27. Расчетные формулы для определения коэффициентов

магнитной проводимости пазового рассеяния короткозамкнутых роторов

Рисунок

Расчетные формулы

9.52, а

9.52,6

9.52, в

9.52, г

9.52, д

При расчете номинального режима двигателя во всех формулах kд= 1.

При закрытых пазах ротора любой конфигурации (рис. 9.52, а—д) в расчетных формулах табл. 9.27 нужно при шлицах по рис. 9.52, е слагаемые hш /bш заменить на 0,3 + 1,12 • 106, по рис. 9.52, ж — наhш/bш + 1,12 • 106, где— толщина ферромагнит­ной перемычки над пазом, м;I2 — ток ротора, А.

Рис. 9.52. К расчету коэффициентов магнитной проводимости

пазового рассеяния короткозамкнутых роторов:

а — д — полузакрытые пазы; е, ж — закрытые пазы

Коэффициент магнитной проводимости лобового рассеяния рассчитывают в зависимости от размеров и расположения замыкающих колец обмотки по следующим формулам.

В роторах с литыми обмотками при замыкающих кольцах, прилегающих к торцам сердечника ротора (см. рис. 9.37, б), используют формулу

(9.178)

Если замыкающие кольца отставлены от торцов ротора (см. рис. 9.37, а), как, например, в обмотке, выполненной из медных или латунных стержней, впаянных в замыкающие кольца, расчет прово­дят по формуле

(9.179)

В этих формулах Dкл.ср — средний диаметр замыкающих колец по (9.171); Δ = 2 sin πρ/Z2 — коэффициент приведения токов в кольце к току в стержне; hкл и bкл — средние высота и ширина колец (см. рис. 9.37); ; — по (9.154).

Коэффициент магнитной проводимости дифференциального рассеяния обмотки, короткозамкнутого ротора

(9.180)

где

(9.181)

ΔZ находят по кривым рис. 9.51, а.

Как видно из (9.181), при большом числе пазов ротора, приходя­щихся на пару полюсов: Z2/p ≥ 10, без заметной погрешности можно принять ξ = 1.

Коэффициент проводимости скоса, учитывающий влияние на ЭДС обмотки ротора скоса пазов,

, (9.182)

где βск — скос пазов, выраженный в зубцовых делениях ротора. При скосе пазов на одно зубцовое деление ротора βск = 1; kμ — коэффициент насыщения магнитной цепи (по 9.129).

Приведенное к числу витков обмотки статора индуктивное со­противление обмотки короткозамкнутого ротора

х'2 = х2 γ12 (9.183)

где v12 — по (9.172).

Сопротивление схемы замещения rμ (см. рис. 9.47, а) является расчетным. Введением его в схему замещения учитывают влияние потерь в стали статора на процессы в асинхронной машине, поэтому значение сопротивления rμ должно быть принято таким, чтобы выделяющаяся в нем активная мощность была равна мощности, затрачиваемой на потери в стали в реальной машине и отнесенной к одной фазе. Таким образом, rμ = РСТ/(m I20a ), так как активные потери в стали определяются активной составляющей тока холостого хода ,I. Из схемы замещения rμ = где.

Сопротивление взаимной индукции обмоток статора и ротора xμ по схеме замещения может быть определено как xμ = Е1\Iμ.

В расчетной практике параллельное включение сопротивлений rμ и хμ оказалось удобнее заменить последовательно включенными сопротивлениями r12 и х12 (см. рис. 9.47, 6), значения которых опре­деляют из условия

откуда

и

Так как в асинхронных машинах rμ ≤ xμ, то х12 ≈ хμ, а r12 << х12. В связи с этим значение r1 не играет заметной роли при анализе процессов в машине, и в расчетах им часто пренебрегают.

Сопротивления r1 и х12 с достаточной для обычных расчетов точностью определяют по следующим формулам:

r12 = Pcт.осн / (m I2μ) ; (9.184)

(9.185)