- •9.1. Общие сведения
- •9.2. Особенности двигателей серии 4а
- •9.3. Особенности двигателей серии аи и аир
- •9.4. Новая серия ра
- •9.5. Задание на проектирование.
- •9.6. Расчет размеров зубцовой зоны статора
- •9.7. Выбор воздушного зазора
- •9.8. Расчет ротора
- •9.8.1. Фазные роторы
- •9.8.2. Короткозамкнутые роторы
- •9.8.3. Сердечники роторов
- •9.9. Расчет магнитной цепи
- •9.9.7. Магнитное напряжение воздушного зазора
- •9.9.2. Магнитное напряжение зубцовой зоны статора
- •9.9.3. Магнитное напряжение зубцовой зоны ротора
- •9.9.4. Магнитное напряжение ярм статора и ротора.
- •9.10. Параметры асинхронной машины
- •9.10.1. Активные сопротивления обмоток статора и фазного ротора
- •9.10.2. Индуктивные сопротивления обмоток двигателей
- •9.10.3. Сопротивления обмоток двигателей с короткозамкнутыми роторами
- •9.10.4. Относительные значения параметров
- •9.11. Потери и кпд
- •9.12. Расчет рабочих характеристик
- •9.13. Расчет пусковых характеристик
- •9.14. Особенности расчета характеристик асинхронных
- •9.15. Особенности теплового и вентиляционного
- •9.16. Примеры расчета
- •9.16.1 Расчет асинхронного двигателя с короткозамкнутым ротором
- •9.16.2. Расчет асинхронного двигателя с фазным ротором
9.10.3. Сопротивления обмоток двигателей с короткозамкнутыми роторами
Активное сопротивление фазы обмотки статора двигателя с короткозамкнутым ротором рассчитывается так же, как и для двигателя с фазным ротором.
Активное сопротивление фазы короткозамкнутого ротора определяется следующим образом. Как говорилось выше, за фазу обмотки, выполненной в виде беличьей клетки, принимают один стержень и два участка замыкающих колец (см. рис. 9,35). Токи в стержнях и замыкающих кольцах различны, поэтому их сопротивления при расчете общего сопротивления фазы должны быть приведены к одному току. Таким образом, сопротивление фазы короткозамкнутого ротора r2 является расчетным параметром, полученным из условия равенства электрических
Рис. 9.51. Коэффициенты к расчету проводимости
дифференциального рассеяния:
а — коэффициент Δz в зависимости от размерных соотношений bш/tzи bш/S;
б — коэффициент k' в зависимости от дробной части числа q;
в — коэффициент К' в зависимости от укорочения шага обмотки β;
г — коэффициент К''βв зависимости от укорочения шага обмотки β и дробной части числа q;
д — коэффициент k'скв зависимости от соотношенияtz2/tz1и относительного скоса пазов βck
потерь в сопротивлении r2 от тока I2 и суммарных потерь в стержне и участках замыкающих колец соответственно от тока в стержне Ic и тока в замыкающем кольце Iкл реальной машины:
(9.166)
где Iс — ток в стержне ротора; Iкл — ток в замыкающих кольцах; rC — сопротивление стержня; rкл — сопротивление участка замыкающего кольца, заключенного между двумя соседними стержнями (см. рис. 9.35).
Ток Iс называют током ротора и в расчетах обозначают I2.
Учитывая, что
Iкл = Iс /Δ = I2 /Δ, (9.167)
где Δ = 2sin — (см. § 9.7), из (9.167), получаем
r2 = rс + 2(9.168)
где
rc = ; (9.169)
rкл = (9.170)
В этих выражениях Iс — полная длина стержня, равная расстоянию между замыкающими кольцами, м; Dкл.ср — средний диаметр замыкающих колец, м (см. рис. 9.37):
Dкл.ср = D2 - hкл; (9.171)
qc — сечение стержня, м2; kr — коэффициент увеличения активного сопротивления стержня от действия эффекта вытеснения тока; при расчете рабочих режимов в пределах изменения скольжения от холостого хода до номинального для всех роторов принимают kr = 1; qкл — площадь поперечного сечения замыкающего кольца, м2; рс и ркл — соответственно удельные сопротивления материала стержня и замыкающих колец, Омм, при расчетной температуре (см. табл. 5.1).
Сопротивление r2 для дальнейших расчетов должно быть приведено к числу витков первичной обмотки. Выражение коэффициента приведения для сопротивления фазы короткозамкнутого ротора получают, подставляя в (9.151) значения m2 = Z2, w2 = 1/2, kоб2 = 1 и учитывая влияние скоса пазов:
(9.172)
где коэффициент скоса пазов (по 3.17)
kск = 2 sin ;
Обычно значения βск выражают в долях зубцового деления ротора tz2. При скосе пазов ротора на одно зубцовое деление статора γck = π2p / Z1. В этом случае в двигателях с 2р = 2 из-за малости угла γck принимают kcк = 1.
Приведенное значение активного сопротивления фазы обмотки короткозамкнутого ротора
r'2 = r2 v12. (9.173)
Индуктивное сопротивление рассеяния обмотки статора асинхронного двигателя с короткозамкнутым ротором рассчитывается по той же формуле, что и для статора с фазными роторами, т. е.
x = 1,58 (9.174)
Входящий в формулу коэффициент магнитной проводимости пазового рассеяния λп определяют в зависимости от конфигурации пазов по формулам табл. 9.26.
Коэффициент магнитной проводимости лобового рассеяния λл определяется по (9.159).
Коэффициент магнитной проводимости дифференциального рассеяния λд1 определяют по формуле
(9.174а)
в которой ξ, находят следующим образом.
При открытых пазах статора и отсутствии скоса статора или ротора
(9.175)
При полузакрытых или полуоткрытых пазах статора с учетом скоса пазов
(9.176)
В этих формулах tz1 и tz2 — зубцовые деления статора и ротора; ΔZ определяют по кривой рис. 9.51, a, kβ определяют по (9.155) или (9.158); βcк = βcк/tz2 — скос пазов, выраженный в долях зубцового деления ротора. При отсутствии скоса пазов bск = 0; k'cк определяют по кривым рис. 9.51, д в зависимости от tz2/tz1 и βcк (при отсутствии скоса пазов — по кривой, соответствующей βск = 0).
Индуктивное сопротивление обмотки короткозамкнутого ротора определяют по формуле
(9.177)
полученной после подстановки в (9.152) значений m2 = Z2 и q2 = 1/(2р) обмотки короткозамкнутого ротора и введения дополнительного слагаемого λск.
Коэффициент магнитной проводимости пазового рассеяния обмотки короткозамкнутого ротора рассчитывают по приведенным в табл. 9.27 формулам в зависимости от конфигурации паза ротора (рис. 9.52).
Таблица 9.27. Расчетные формулы для определения коэффициентов
магнитной проводимости пазового рассеяния короткозамкнутых роторов
Рисунок |
Расчетные формулы |
9.52, а | |
9.52,6 | |
9.52, в | |
9.52, г | |
9.52, д |
При расчете номинального режима двигателя во всех формулах kд= 1.
При закрытых пазах ротора любой конфигурации (рис. 9.52, а—д) в расчетных формулах табл. 9.27 нужно при шлицах по рис. 9.52, е слагаемые hш /bш заменить на 0,3 + 1,12 • 106, по рис. 9.52, ж — наhш/bш + 1,12 • 106, где— толщина ферромагнитной перемычки над пазом, м;I2 — ток ротора, А.
Рис. 9.52. К расчету коэффициентов магнитной проводимости
пазового рассеяния короткозамкнутых роторов:
а — д — полузакрытые пазы; е, ж — закрытые пазы
Коэффициент магнитной проводимости лобового рассеяния рассчитывают в зависимости от размеров и расположения замыкающих колец обмотки по следующим формулам.
В роторах с литыми обмотками при замыкающих кольцах, прилегающих к торцам сердечника ротора (см. рис. 9.37, б), используют формулу
(9.178)
Если замыкающие кольца отставлены от торцов ротора (см. рис. 9.37, а), как, например, в обмотке, выполненной из медных или латунных стержней, впаянных в замыкающие кольца, расчет проводят по формуле
(9.179)
В этих формулах Dкл.ср — средний диаметр замыкающих колец по (9.171); Δ = 2 sin πρ/Z2 — коэффициент приведения токов в кольце к току в стержне; hкл и bкл — средние высота и ширина колец (см. рис. 9.37); ; — по (9.154).
Коэффициент магнитной проводимости дифференциального рассеяния обмотки, короткозамкнутого ротора
(9.180)
где
(9.181)
ΔZ находят по кривым рис. 9.51, а.
Как видно из (9.181), при большом числе пазов ротора, приходящихся на пару полюсов: Z2/p ≥ 10, без заметной погрешности можно принять ξ = 1.
Коэффициент проводимости скоса, учитывающий влияние на ЭДС обмотки ротора скоса пазов,
, (9.182)
где βск — скос пазов, выраженный в зубцовых делениях ротора. При скосе пазов на одно зубцовое деление ротора βск = 1; kμ — коэффициент насыщения магнитной цепи (по 9.129).
Приведенное к числу витков обмотки статора индуктивное сопротивление обмотки короткозамкнутого ротора
х'2 = х2 γ12 (9.183)
где v12 — по (9.172).
Сопротивление схемы замещения rμ (см. рис. 9.47, а) является расчетным. Введением его в схему замещения учитывают влияние потерь в стали статора на процессы в асинхронной машине, поэтому значение сопротивления rμ должно быть принято таким, чтобы выделяющаяся в нем активная мощность была равна мощности, затрачиваемой на потери в стали в реальной машине и отнесенной к одной фазе. Таким образом, rμ = РСТ/(m I20a ), так как активные потери в стали определяются активной составляющей тока холостого хода ,I0а. Из схемы замещения rμ = где.
Сопротивление взаимной индукции обмоток статора и ротора xμ по схеме замещения может быть определено как xμ = Е1\Iμ.
В расчетной практике параллельное включение сопротивлений rμ и хμ оказалось удобнее заменить последовательно включенными сопротивлениями r12 и х12 (см. рис. 9.47, 6), значения которых определяют из условия
откуда
и
Так как в асинхронных машинах rμ ≤ xμ, то х12 ≈ хμ, а r12 << х12. В связи с этим значение r1 не играет заметной роли при анализе процессов в машине, и в расчетах им часто пренебрегают.
Сопротивления r1 и х12 с достаточной для обычных расчетов точностью определяют по следующим формулам:
r12 = Pcт.осн / (m I2μ) ; (9.184)
(9.185)