- •9.1. Общие сведения
- •9.2. Особенности двигателей серии 4а
- •9.3. Особенности двигателей серии аи и аир
- •9.4. Новая серия ра
- •9.5. Задание на проектирование.
- •9.6. Расчет размеров зубцовой зоны статора
- •9.7. Выбор воздушного зазора
- •9.8. Расчет ротора
- •9.8.1. Фазные роторы
- •9.8.2. Короткозамкнутые роторы
- •9.8.3. Сердечники роторов
- •9.9. Расчет магнитной цепи
- •9.9.7. Магнитное напряжение воздушного зазора
- •9.9.2. Магнитное напряжение зубцовой зоны статора
- •9.9.3. Магнитное напряжение зубцовой зоны ротора
- •9.9.4. Магнитное напряжение ярм статора и ротора.
- •9.10. Параметры асинхронной машины
- •9.10.1. Активные сопротивления обмоток статора и фазного ротора
- •9.10.2. Индуктивные сопротивления обмоток двигателей
- •9.10.3. Сопротивления обмоток двигателей с короткозамкнутыми роторами
- •9.10.4. Относительные значения параметров
- •9.11. Потери и кпд
- •9.12. Расчет рабочих характеристик
- •9.13. Расчет пусковых характеристик
- •9.14. Особенности расчета характеристик асинхронных
- •9.15. Особенности теплового и вентиляционного
- •9.16. Примеры расчета
- •9.16.1 Расчет асинхронного двигателя с короткозамкнутым ротором
- •9.16.2. Расчет асинхронного двигателя с фазным ротором
9.9.4. Магнитное напряжение ярм статора и ротора.
Намагничивающий ток
Магнитное напряжение ярма статора, А,
Fa = La Ha, (9.116)
где La — длина средней магнитной силовой линии в ярме статора, м; На — напряженность поля при индукции Ва по кривой намагничивания для ярма, принятой при проектировании стали, А/м.
Индукция в ярме статора, Тл,
Ва = Ф / (2h'a lст1 kc1 ), (9.117)
где h'а — расчетная высота ярма статора, м:
(9.118)
где dk1 и mk1 — диаметр и число рядов аксиальных вентиляционных каналов в сердечнике статора; при отсутствии каналов mk1 = 0.
Длина средней магнитной силовой линии в ярме статора, м,
La = (Da - ha) / (2p), (9.119)
где ha — высота ярма статора, м:
ha = (Da - D) / 2 – hп1. (9.120)
Магнитное напряжение ярма ротора, А,
Fj = Lj Hj (9.121)
где Hj — напряженность поля в ярме при индукции Bj по кривой намагничивания для ярма принятой при проектировании стали. Индукция в ярме ротора, Тл,
Вj = Ф / (2 h'j lст2 kc2 ), (9.122)
где kс2 — коэффициент заполнения сталью ярма ротора (по табл. 9.13); h'j — расчетная высота ярма ротора, м.
Для роторов с посадкой сердечника на втулку или на оребренный вал (крупные асинхронные двигатели) расчетная высота ярма статора (см. рис. 9.43), м,
(9.123)
В двигателях с непосредственной посадкой сердечника ротора на вал внутренний диаметр ротора равен диаметру вала: Dj = DB. B таких двигателях с 2р = 2 или 4 учитывают, что часть магнитных силовых линий потока замыкается через вал. Поэтому в двигателях с 2р = 2 расчетную высоту ярма ротора, м, определяют из выражения
. (9.124)
и длина силовых линий в ярме, м,
Lj = 2 hj, (9.125)
где высота ярма ротора, м,
hj = (D2 - Dв) / 2 - hп2. (9.126)
В двигателях с 2р = 4 с непосредственной посадкой сердечника ротора на вал, имеющих размерные соотношения, при которых , расчетную высоту ярма ротора определяют по (9.124), при других размерных соотношениях — по (9.126).
Длина средней магнитной силовой линии в ярме ротора всех двигателей, кроме двухполюсных, с непосредственной посадкой сердечника ротора на вал, м,
Lj = π(Dj + hj) / (2p), (9.127)
где
hj = (D2 — Dj) / 2 — hпa.
На этом расчет магнитных напряжений участков магнитной цепи двигателя заканчивается. Суммарное магнитное напряжение магнитной цепи (на пару полюсов), А,
Fu = Fδ + Fz1 + Fz2 + Fa + Fj. (9.128)
Коэффициент насыщения магнитной цепи
kμ = Fu / Fδ. (9.129)
Намагничивающий ток, А,
Iμ ≈ (9.130)
Намагничивающий ток выражается также в процентах или в долях номинального тока двигателя:
(9.131)
Относительное значение I*μ служит определенным критерием правильности произведенного выбора и расчета размеров и обмотки двигателя. Так, если при проектировании четырехполюсного двигателя средней мощности расчет показал, что I*μ < 0,20.. .0,18, то в большинстве случаев это свидетельствует о том, что размеры машины выбраны завышенными и активные материалы недоиспользованы. Такой двигатель может иметь высокие КПД и cosφ, но плохие показатели расхода материалов на единицу мощности, большие массу и габариты.
Если же в аналогичном двигателе I*μ > 0,3...0,4, то это в большинстве случаев означает, что либо его габариты взяты меньшими, чем следовало, либо неправильно выбраны размерные соотношения участков магнитопровода. Двигатель будет иметь низкие КПД и cosφ.
В небольших двигателях мощностью менее 2...3 кВт I*μ может достигать значения 0,5...0,6, несмотря на правильно выбранные размеры и малое насыщение магнитопровода. Это объясняется относительно большим значением магнитного напряжения воздушного зазора, характерным для двигателей малой мощности [6].