Скачиваний:
322
Добавлен:
04.03.2014
Размер:
11.64 Mб
Скачать

9.9.4. Магнитное напряжение ярм статора и ротора.

Намагничивающий ток

Магнитное напряжение ярма статора, А,

Fa = La Ha, (9.116)

где La — длина средней магнитной силовой линии в ярме статора, м; На — напряженность поля при индукции Ва по кривой намагничива­ния для ярма, принятой при проектировании стали, А/м.

Индукция в ярме статора, Тл,

Ва = Ф / (2h'a lст1 kc1 ), (9.117)

где h'а — расчетная высота ярма статора, м:

(9.118)

где dk1 и mk1 — диаметр и число рядов аксиальных вентиляционных каналов в сердечнике статора; при отсутствии каналов mk1 = 0.

Длина средней магнитной силовой линии в ярме статора, м,

La = (Da - ha) / (2p), (9.119)

где ha — высота ярма статора, м:

ha = (Da - D) / 2 – hп1. (9.120)

Магнитное напряжение ярма ротора, А,

Fj = Lj Hj (9.121)

где Hj — напряженность поля в ярме при индукции Bj по кривой намагничивания для ярма принятой при проектировании стали. Индукция в ярме ротора, Тл,

Вj = Ф / (2 h'j lст2 kc2 ), (9.122)

где kс2 — коэффициент заполнения сталью ярма ротора (по табл. 9.13); h'j — расчетная высота ярма ротора, м.

Для роторов с посадкой сердечника на втулку или на оребрен­ный вал (крупные асинхронные двигатели) расчетная высота ярма статора (см. рис. 9.43), м,

(9.123)

В двигателях с непосредственной посадкой сердечника ротора на вал внутренний диаметр ротора равен диаметру вала: Dj = DB. B таких двигателях с 2р = 2 или 4 учитывают, что часть магнитных силовых линий потока замыкается через вал. Поэтому в двигателях с 2р = 2 расчетную высоту ярма ротора, м, определяют из выра­жения

. (9.124)

и длина силовых линий в ярме, м,

Lj = 2 hj, (9.125)

где высота ярма ротора, м,

hj = (D2 - Dв) / 2 - hп2. (9.126)

В двигателях с 2р = 4 с непосредственной посадкой сердечника ротора на вал, имеющих размерные соотношения, при которых , расчетную высоту ярма ротора определяют по (9.124), при других размерных соотношениях — по (9.126).

Длина средней магнитной силовой линии в ярме ротора всех двигателей, кроме двухполюсных, с непосредственной посадкой сер­дечника ротора на вал, м,

Lj = π(Dj + hj) / (2p), (9.127)

где

hj = (D2 — Dj) / 2 — hпa.

На этом расчет магнитных напряжений участков магнитной цепи двигателя заканчивается. Суммарное магнитное напряжение магнитной цепи (на пару полюсов), А,

Fu = Fδ + Fz1 + Fz2 + Fa + Fj. (9.128)

Коэффициент насыщения магнитной цепи

kμ = Fu / Fδ. (9.129)

Намагничивающий ток, А,

Iμ (9.130)

Намагничивающий ток выражается также в процентах или в до­лях номинального тока двигателя:

(9.131)

Относительное значение I*μ служит определенным критерием правильности произведенного выбора и расчета размеров и обмот­ки двигателя. Так, если при проектировании четырехполюсного двигателя средней мощности расчет показал, что I*μ < 0,20.. .0,18, то в большинстве случаев это свидетельствует о том, что размеры машины выбраны завышенными и активные материалы недоиспользо­ваны. Такой двигатель может иметь высокие КПД и cosφ, но плохие показатели расхода материалов на единицу мощности, большие массу и габариты.

Если же в аналогичном двигателе I*μ > 0,3...0,4, то это в большин­стве случаев означает, что либо его габариты взяты меньшими, чем следовало, либо неправильно выбраны размерные соотношения участков магнитопровода. Двигатель будет иметь низкие КПД и cosφ.

В небольших двигателях мощностью менее 2...3 кВт I*μ может до­стигать значения 0,5...0,6, несмотря на правильно выбранные разме­ры и малое насыщение магнитопровода. Это объясняется относите­льно большим значением магнитного напряжения воздушного зазора, характерным для двигателей малой мощности [6].